From the following diagrams, find the trigonometric ratios of the angle θ
⇒ sin θ =
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
From the following diagrams, find the trigonometric ratios of the angle θ
⇒ sin θ =
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
From the following diagrams, find the trigonometric ratios of the angle θ
sin θ =
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
From the following diagrams, find the trigonometric ratios of the angle θ
sin θ =
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
From the following diagrams, find the trigonometric ratios of the angle θ
sin θ =
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
From the following diagrams, find the trigonometric ratios of the angle θ
sin θ =
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
From the following diagrams, find the trigonometric ratios of the angle θ
sin θ =
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
From the following diagrams, find the trigonometric ratios of the angle θ
sin θ =
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
Let the third side be p,
By Pythagoras theorem,
⇒ 92 + p2 = 152
⇒ 81 + p2 = 225
⇒ p2 = 144
⇒ p = 12
Therefore, the other angles are:
cos A =
tan A =
cosec A =
sec A =
cot A =
Let the third side be p,
By Pythagoras theorem,
⇒ 92 + p2 = 152
⇒ 81 + p2 = 225
⇒ p2 = 144
⇒ p = 12
Therefore, the other angles are:
cos A =
tan A =
cosec A =
sec A =
cot A =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ 152 + p2 = 172
⇒ 225 + p2 = 289
⇒ p2 = 64
⇒ p = 8
Therefore, the other angles are:
sin P =
tan P =
cosec P =
sec P =
cot P =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ 152 + p2 = 172
⇒ 225 + p2 = 289
⇒ p2 = 64
⇒ p = 8
Therefore, the other angles are:
sin P =
tan P =
cosec P =
sec P =
cot P =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ 52 + 122 = P2
⇒ 25 + 144 = p2
⇒ p2 = 169
⇒ p = 13
Therefore, the other angles are:
sin P =
cos P =
cosec P =
sec P =
cot P =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ 52 + 122 = P2
⇒ 25 + 144 = p2
⇒ p2 = 169
⇒ p = 13
Therefore, the other angles are:
sin P =
cos P =
cosec P =
sec P =
cot P =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ 152 + p2 = 172
⇒ 64 + p2 = 289
⇒ p2 = 225
⇒ p = 15
Therefore, the other angles are:
sin θ =
cos θ =
tan θ =
cosec θ =
cot θ =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ 152 + p2 = 172
⇒ 64 + p2 = 289
⇒ p2 = 225
⇒ p = 15
Therefore, the other angles are:
sin θ =
cos θ =
tan θ =
cosec θ =
cot θ =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ 602 + p2 = 612
⇒ 3600 + p2 = 3721
⇒ p2 = 121
⇒ p = 11
Therefore, the other angles are:
sin θ =
cos θ =
tan θ =
sec θ =
cot θ =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ 602 + p2 = 612
⇒ 3600 + p2 = 3721
⇒ p2 = 121
⇒ p = 11
Therefore, the other angles are:
sin θ =
cos θ =
tan θ =
sec θ =
cot θ =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ x2 + p2 = y2
⇒ p2 = y2 – x2
⇒ p = √y2 – x2
Therefore, the other angles are:
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
Find the other trigonometric ratios of the following
Let the third side be p,
By Pythagoras theorem,
⇒ x2 + p2 = y2
⇒ p2 = y2 – x2
⇒ p = √y2 – x2
Therefore, the other angles are:
cos θ =
tan θ =
cosec θ =
sec θ =
cot θ =
Find the value of θ, if
(i)
(ii) sin θ = 0
(iii)
(iv)
(i)
θ = 45° (From the table)
(ii)
θ = 0° (From the table)
(iii)
θ = 60° (From the table)
(iv)
θ = 30° (From the table)
Find the value of θ, if
(i)
(ii) sin θ = 0
(iii)
(iv)
(i)
sin θ = sin 45°θ = 45° (From the table)
(ii)
sin θ = sin 0°θ = 0° (From the table)
(iii)
tan θ = tan 60°θ = 60° (From the table)
(iv)
θ = 30° (From the table)
In ΔABC, right angled at B, AB = 10 and AC = 26. Find the six trigonometric ratios of the angles A and C.
For ∠A:
sin A =
cos A =
tan A =
cosec A =
sec A =
cot A =
For ∠C:
sin C =
cos C =
tan C =
cosec C =
sec C =
cot C =
In ΔABC, right angled at B, AB = 10 and AC = 26. Find the six trigonometric ratios of the angles A and C.
For ∠A:
sin A =
cos A =
tan A =
cosec A =
sec A =
cot A =
For ∠C:
sin C =
cos C =
tan C =
cosec C =
sec C =
cot C =
If 5cos θ – 12 sin θ = 0, find
5cosθ –12sinθ = 0
⇒ 5cosθ = 12sinθ
⇒ tanθ = 5/12
Let the third side be p,
By Pythagoras theorem,
⇒ 52 + 122 = P2
⇒ 25 + 144 = p2
⇒ p2 = 169
⇒ p = 13
Therefore, the other angles are:
sin θ =
cos θ =
Putting values in the function as:
⇒
⇒
⇒
If 5cos θ – 12 sin θ = 0, find
5cosθ –12sinθ = 0
⇒ 5cosθ = 12sinθ
⇒ tanθ = 5/12
Let the third side be p,
By Pythagoras theorem,
⇒ 52 + 122 = P2
⇒ 25 + 144 = p2
⇒ p2 = 169
⇒ p = 13
Therefore, the other angles are:
sin θ =
cos θ =
Putting values in the function as:
⇒
⇒
⇒
If 29cosθ = 20 find sec2 θ – tan2 θ.
29cosθ = 20
⇒ cosθ = 20/29
Let the third side be p,
By Pythagoras theorem,
⇒ 202 + p2 = 292
⇒ 400 + p2 = 841
⇒ p2 = 441
⇒ p = 21
Therefore, the other angles are:
sec θ =
tan θ =
Putting the values in function:
⇒ sec2 θ – tan2 θ
⇒
⇒
⇒
If 29cosθ = 20 find sec2 θ – tan2 θ.
29cosθ = 20
⇒ cosθ = 20/29
Let the third side be p,
By Pythagoras theorem,
⇒ 202 + p2 = 292
⇒ 400 + p2 = 841
⇒ p2 = 441
⇒ p = 21
Therefore, the other angles are:
sec θ =
tan θ =
Putting the values in function:
⇒ sec2 θ – tan2 θ
⇒
⇒
⇒
If find .
∠BAC = θ
Let the third side be p,
By Pythagoras theorem,
⇒ 102 + p2 = 262
⇒ 100 + p2 = 676
⇒ p2 = 576
⇒ p = 24
Therefore, the other angles are:
sin θ =
cos θ =
Putting values in the function as:
⇒
⇒
⇒
If find .
∠BAC = θ
Let the third side be p,
By Pythagoras theorem,
⇒ 102 + p2 = 262
⇒ 100 + p2 = 676
⇒ p2 = 576
⇒ p = 24
Therefore, the other angles are:
sin θ =
cos θ =
Putting values in the function as:
⇒
⇒
⇒
If find sin2 θ + cos2 θ.
Let the third side be p,
By Pythagoras theorem,
⇒ a2 + b2 = p2
⇒ p = √a2 + b2
Therefore, the other angles are:
sin θ =
cos θ =
Putting the values in function:
⇒ sin2 θ + cos2 θ
⇒
⇒
⇒
If find sin2 θ + cos2 θ.
Let the third side be p,
By Pythagoras theorem,
⇒ a2 + b2 = p2
⇒ p = √a2 + b2
Therefore, the other angles are:
sin θ =
cos θ =
Putting the values in function:
⇒ sin2 θ + cos2 θ
⇒
⇒
⇒
If , evaluate
Simplifying the function:
⇒
⇒
Let the third side be p,
By Pythagoras theorem,
⇒ 82 + 152 = P2
⇒ 64 + 225 = p2
⇒ p2 = 289
⇒ p = 17
Therefore, the other angles are:
sin θ =
cos θ =
Putting these values in the simplied function:
⇒
⇒
⇒
⇒
If , evaluate
Simplifying the function:
⇒
⇒
Let the third side be p,
By Pythagoras theorem,
⇒ 82 + 152 = P2
⇒ 64 + 225 = p2
⇒ p2 = 289
⇒ p = 17
Therefore, the other angles are:
sin θ =
cos θ =
Putting these values in the simplied function:
⇒
⇒
⇒
⇒
In triangle PQR, right angled at Q, if tan find the value of
(i) sin P cos R + cos P sin R
(ii) cos P cos R – sin P sin R.
Let the third side be p,
By Pythagoras theorem,
⇒ 12 + (√3)2 = P2
⇒ 1 + 3 = p2
⇒ p2 = 4
⇒ p = 2
Therefore, the other angles are:
sin P =
cos P =
sin R =
cos R =
(i) Putting the values in the expression:
sin P cos R + cos P sin R
⇒
⇒
⇒ 1
(ii) Putting the values in the expression:
cos P cos R – sin P sin R.
⇒
⇒ 0
In triangle PQR, right angled at Q, if tan find the value of
(i) sin P cos R + cos P sin R
(ii) cos P cos R – sin P sin R.
Let the third side be p,
By Pythagoras theorem,
⇒ 12 + (√3)2 = P2
⇒ 1 + 3 = p2
⇒ p2 = 4
⇒ p = 2
Therefore, the other angles are:
sin P =
cos P =
sin R =
cos R =
(i) Putting the values in the expression:
sin P cos R + cos P sin R
⇒
⇒
⇒ 1
(ii) Putting the values in the expression:
cos P cos R – sin P sin R.
⇒
⇒ 0
If show that
Let the third side be p,
By Pythagoras theorem,
⇒ 52 + p2 = 132
⇒ 25 + p2 = 169
⇒ p2 = 144
⇒ p = 12
Therefore, the other angles are:
sin θ =
cos θ =
Putting these values in the left hand side:
⇒
⇒
⇒
⇒ 3
Which is equal to right hand side.
Hence proved.
If show that
Let the third side be p,
By Pythagoras theorem,
⇒ 52 + p2 = 132
⇒ 25 + p2 = 169
⇒ p2 = 144
⇒ p = 12
Therefore, the other angles are:
sin θ =
cos θ =
Putting these values in the left hand side:
⇒
⇒
⇒
⇒ 3
Which is equal to right hand side.
Hence proved.
If prove that 1–2 sin2A = 2cos2A – 1.
Let the third side be p,
By Pythagoras theorem,
⇒ 82 + p2 = 172
⇒ 64 + p2 = 289
⇒ p2 = 225
⇒ p = 15
Therefore, the other angles are:
sin θ =
cos θ =
Putting these values in the left hand side:
⇒ 1–2×
⇒ 1–2×
⇒ 1–
⇒
Putting values in the right hand side:
⇒ 2×
⇒ 2× –1
⇒
⇒
Therefore, Left hand side and right hand side are equal.
Hence proved.
If prove that 1–2 sin2A = 2cos2A – 1.
Let the third side be p,
By Pythagoras theorem,
⇒ 82 + p2 = 172
⇒ 64 + p2 = 289
⇒ p2 = 225
⇒ p = 15
Therefore, the other angles are:
sin θ =
cos θ =
Putting these values in the left hand side:
⇒ 1–2×
⇒ 1–2×
⇒ 1–
⇒
Putting values in the right hand side:
⇒ 2×
⇒ 2× –1
⇒
⇒
Therefore, Left hand side and right hand side are equal.
Hence proved.
Evaluate.
(i) sin 45° + cos 45°
(ii) sin 60° tan 30°
(iii)
(iv) cos260° sin230° + tan2 30° cot2 60°
(v) 6cos2 90° + 3sin2 90° + 4 tan2 45°
(vi)
(vii)
(viii) 4(sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°)
(i) We know sin 45° = (1/√2) and cos 45° = (1/√2) (From the table)
⇒
⇒
(ii) We know sin 30° = 1/2 and tan 45° = 1 (From the table)
⇒
(iii) We know tan 30° = (1/√3) (From the table)
tan 45° = 1
tan 60° = √3
⇒
⇒
⇒
(iv) We know sin 30° = cos 60° = 1/2 (From the table)
tan 30° = cot 60° = 1/√3
⇒
⇒
⇒
⇒
(v) We know that cos 90° = 0 , sin 90° = 1 and tan 45° = 1 (From the table)
⇒ 6(0)2 + 3(1)2 + 4(1)2
⇒ 3 + 4
⇒ 7
(vi) We know cot 60° = (1/√3) (From the table)
sec 30° = 2/√3
sin 45° = 1/√2
sin 60° = √3/2
cos 45° = 1/√2
⇒
⇒
⇒
⇒
(vii) We know tan 60° = √3 (From the table)
cos 45° = 1/√2
sec 30° = 2/√3
cos 90° = 0
cosec 30° = 2
sec 60° = 2
cot 30° = √3
⇒
⇒
⇒ 9
(viii) We know
sin 30° = cos 60° = 1/2 (From the table)
cos 45° = 1/√2
sin 90° = 1
⇒ 4(
⇒ 4(
⇒ 4(
⇒ 2
Evaluate.
(i) sin 45° + cos 45°
(ii) sin 60° tan 30°
(iii)
(iv) cos260° sin230° + tan2 30° cot2 60°
(v) 6cos2 90° + 3sin2 90° + 4 tan2 45°
(vi)
(vii)
(viii) 4(sin4 30° + cos4 60°) – 3 (cos2 45° – sin2 90°)
(i) We know sin 45° = (1/√2) and cos 45° = (1/√2) (From the table)
⇒
⇒
(ii) We know sin 30° = 1/2 and tan 45° = 1 (From the table)
⇒
(iii) We know tan 30° = (1/√3) (From the table)
tan 45° = 1
tan 60° = √3
⇒
⇒
⇒
(iv) We know sin 30° = cos 60° = 1/2 (From the table)
tan 30° = cot 60° = 1/√3
⇒
⇒
⇒
⇒
(v) We know that cos 90° = 0 , sin 90° = 1 and tan 45° = 1 (From the table)
⇒ 6(0)2 + 3(1)2 + 4(1)2
⇒ 3 + 4
⇒ 7
(vi) We know cot 60° = (1/√3) (From the table)
sec 30° = 2/√3
sin 45° = 1/√2
sin 60° = √3/2
cos 45° = 1/√2
⇒
⇒
⇒
⇒
(vii) We know tan 60° = √3 (From the table)
cos 45° = 1/√2
sec 30° = 2/√3
cos 90° = 0
cosec 30° = 2
sec 60° = 2
cot 30° = √3
⇒
⇒
⇒ 9
(viii) We know
sin 30° = cos 60° = 1/2 (From the table)
cos 45° = 1/√2
sin 90° = 1
⇒ 4(
⇒ 4(
⇒ 4(
⇒ 2
Verify the following equalities.
(i) sin230° + cos230° = 1
(ii) 1 + tan245° = sec245°
(iii) cos 60° = 1 – 2sin2 30° = 2cos2 30° – 1
(iv) cos 90° = 1 – 2 sin2 45° = 2cos2 45° – 1
(v)
(vi)
(vii)
(viii) tan260° – 2tan245° – cot230° + 2sin2
(ix) 4cot245° – sec260° + sin2 60° = 1
(x) sin30° cos60° + cos30° sin60° = sin 90°
(i) We know sin 30° = (1/2) and cos 30° = (√3/2) (From the table)
Putting the values in the left hand side:
⇒
⇒
⇒ 1
Which is equal to the right hand side.
Hence verified.
(ii) We know tan 45° = 1 and sec 45° = √2 (From the table)
Putting the values in the left hand side:
⇒ 1 + (1)2
⇒ 1 + 1
⇒ 2
Putting the values in the right hand side:
⇒ (√2)2
⇒ 2
∴ LHS = RHS
Hence verified.
(iii) We know sin 30° = cos 60° = (1/2) and cos 30° = (√3/2) (From the table)
So the leftmost function = cos60° = (1/2)
Putting values in the middle function:
⇒ 1 – 2×
⇒
⇒ 1/2
Putting values in the rightmost function:
⇒ 2×
⇒
⇒ 1/2
Therefore, all simplify to 1/2 and are equal.
Hence verified.
(iv) We know sin 45° = cos 45° = (1/√ 2) and cos 90° = 0 (From the table)
So the leftmost function = cos90° = 0
Putting values in the middle function:
⇒ 1 – 2×
⇒
⇒ 0
Putting values in the rightmost function:
⇒ 2×
⇒
⇒ 0
Therefore, all simplify to 0 and are equal.
Hence verified.
(v) We know sin 60° = (√3/2) (From the table)
cos 60° = (1/2)
tan 60° = √3
and sec 30° = 2
Putting values in the left hand side:
⇒
⇒
⇒
Putting values in the right hand side:
⇒
Therefore, left hand side and right hand side are equal.
Hence verified.
(vi) We know cos 60° = (1/2) (From the table)
tan 60° = √3
Putting values in the left hand side:
⇒
⇒
⇒
Putting values in the right hand side:
⇒
⇒
⇒
⇒
Therefore, left hand side and right hand side are equal.
Hence verified.
(vii) We know sec 60° = (2/√3) (From the table)
tan 30° = (1/√3)
sin 30° = (1/2)
Putting values in the left hand side:
⇒
⇒
⇒ 3
Putting values in the right hand side:
⇒
⇒
⇒ 3
Therefore, left hand side and right hand side are equal.
Hence verified.
(viii) We know sin 30° = (1/2) (From the table)
cot 30° = √3
cosec 45° = √2
tan 60° = √3
and tan 45° = 1
Putting the values in the left hand side:
⇒
⇒
⇒ 0
Which is equal to the right hand side.
Hence verified.
(ix) We know cos 60° = (1/2) (From the table)
sin 60° = (√3/2)
sec 60° = 2
and cot 45° = 1
Putting the values in the left hand side:
⇒
⇒
⇒ 1
Which is equal to the right hand side.
Hence verified.
(x) We know sin 30° = cos 60° = (1/2) (From the table)
Cos 30° = sin 60° = (√3/2)
Sin 90° = 1
So the right hand side = sin 90° = 1
Putting the values in the left hand side:
⇒
⇒
⇒ 1
Which is equal to the right hand side.
Hence verified.
Verify the following equalities.
(i) sin230° + cos230° = 1
(ii) 1 + tan245° = sec245°
(iii) cos 60° = 1 – 2sin2 30° = 2cos2 30° – 1
(iv) cos 90° = 1 – 2 sin2 45° = 2cos2 45° – 1
(v)
(vi)
(vii)
(viii) tan260° – 2tan245° – cot230° + 2sin2
(ix) 4cot245° – sec260° + sin2 60° = 1
(x) sin30° cos60° + cos30° sin60° = sin 90°
(i) We know sin 30° = (1/2) and cos 30° = (√3/2) (From the table)
Putting the values in the left hand side:
⇒
⇒
⇒ 1
Which is equal to the right hand side.
Hence verified.
(ii) We know tan 45° = 1 and sec 45° = √2 (From the table)
Putting the values in the left hand side:
⇒ 1 + (1)2
⇒ 1 + 1
⇒ 2
Putting the values in the right hand side:
⇒ (√2)2
⇒ 2
∴ LHS = RHS
Hence verified.
(iii) We know sin 30° = cos 60° = (1/2) and cos 30° = (√3/2) (From the table)
So the leftmost function = cos60° = (1/2)
Putting values in the middle function:
⇒ 1 – 2×
⇒
⇒ 1/2
Putting values in the rightmost function:
⇒ 2×
⇒
⇒ 1/2
Therefore, all simplify to 1/2 and are equal.
Hence verified.
(iv) We know sin 45° = cos 45° = (1/√ 2) and cos 90° = 0 (From the table)
So the leftmost function = cos90° = 0
Putting values in the middle function:
⇒ 1 – 2×
⇒
⇒ 0
Putting values in the rightmost function:
⇒ 2×
⇒
⇒ 0
Therefore, all simplify to 0 and are equal.
Hence verified.
(v) We know sin 60° = (√3/2) (From the table)
cos 60° = (1/2)
tan 60° = √3
and sec 30° = 2
Putting values in the left hand side:
⇒
⇒
⇒
Putting values in the right hand side:
⇒
Therefore, left hand side and right hand side are equal.
Hence verified.
(vi) We know cos 60° = (1/2) (From the table)
tan 60° = √3
Putting values in the left hand side:
⇒
⇒
⇒
Putting values in the right hand side:
⇒
⇒
⇒
⇒
Therefore, left hand side and right hand side are equal.
Hence verified.
(vii) We know sec 60° = (2/√3) (From the table)
tan 30° = (1/√3)
sin 30° = (1/2)
Putting values in the left hand side:
⇒
⇒
⇒ 3
Putting values in the right hand side:
⇒
⇒
⇒ 3
Therefore, left hand side and right hand side are equal.
Hence verified.
(viii) We know sin 30° = (1/2) (From the table)
cot 30° = √3
cosec 45° = √2
tan 60° = √3
and tan 45° = 1
Putting the values in the left hand side:
⇒
⇒
⇒ 0
Which is equal to the right hand side.
Hence verified.
(ix) We know cos 60° = (1/2) (From the table)
sin 60° = (√3/2)
sec 60° = 2
and cot 45° = 1
Putting the values in the left hand side:
⇒
⇒
⇒ 1
Which is equal to the right hand side.
Hence verified.
(x) We know sin 30° = cos 60° = (1/2) (From the table)
Cos 30° = sin 60° = (√3/2)
Sin 90° = 1
So the right hand side = sin 90° = 1
Putting the values in the left hand side:
⇒
⇒
⇒ 1
Which is equal to the right hand side.
Hence verified.
Evaluate
⇒
⇒
⇒
⇒ 1
Evaluate
⇒
⇒
⇒
⇒ 1
Evaluate
⇒
⇒
⇒
⇒ 1
Evaluate
⇒
⇒
⇒
⇒ 1
Evaluate
sin θ sec(90° – θ)
⇒ sin θ sec (90–θ)
⇒ sin θ cosec θ
⇒ sin θ × (1/sin θ )
⇒ 1
Evaluate
sin θ sec(90° – θ)
⇒ sin θ sec (90–θ)
⇒ sin θ cosec θ
⇒ sin θ × (1/sin θ )
⇒ 1
Evaluate
⇒
⇒
⇒
⇒ 1
Evaluate
⇒
⇒
⇒
⇒ 1
Evaluate
⇒
⇒
⇒
⇒ 1
Evaluate
⇒
⇒
⇒
⇒ 1
Evaluate
⇒
⇒
⇒
⇒ 1
Evaluate
⇒
⇒
⇒
⇒ 1
Simplify
cos 38° cos 52° – sin 38° sin 52°
⇒ cos 38° cos 52° – sin 38° sin 52°
⇒ cos 38° sin (90–52)° – sin 38° cos (90–52)°
⇒ cos 38° sin 38° – sin 38° cos 38°
⇒ 0
Simplify
cos 38° cos 52° – sin 38° sin 52°
⇒ cos 38° cos 52° – sin 38° sin 52°
⇒ cos 38° sin (90–52)° – sin 38° cos (90–52)°
⇒ cos 38° sin 38° – sin 38° cos 38°
⇒ 0
Simplify
⇒
⇒
⇒ 1 + 1 = 2
Simplify
⇒
⇒
⇒ 1 + 1 = 2
Simplify
⇒
⇒
⇒ 1 – 1 = 0
Simplify
⇒
⇒
⇒ 1 – 1 = 0
Simplify
⇒
⇒
⇒ (3×1) + (1/2)×1 + (5/2)×1
⇒ 3 + 3 = 6
Simplify
⇒
⇒
⇒ (3×1) + (1/2)×1 + (5/2)×1
⇒ 3 + 3 = 6
Simplify
⇒
⇒
⇒ 1 × 1 = 1
Simplify
⇒
⇒
⇒ 1 × 1 = 1
Simplify
⇒
⇒ 2 × 1 + 7 × 1
⇒ 2 + 7 = 9
Simplify
⇒
⇒ 2 × 1 + 7 × 1
⇒ 2 + 7 = 9
Simplify
⇒
⇒
⇒
⇒
⇒ sec θ – sec θ
⇒ 0
Simplify
⇒
⇒
⇒
⇒
⇒ sec θ – sec θ
⇒ 0
Simplify
⇒
⇒
⇒ 1 + 1 –(1/2)
⇒ 3/2
Simplify
⇒
⇒
⇒ 1 + 1 –(1/2)
⇒ 3/2
Simplify
cot12° cot38° cot52° cot60° cot78°.
⇒ cot 12° cot 38° tan (90–52)° tan (90–78)°
⇒ cot 12° cot 38° tan (38)° tan (12)°
⇒ cot 12° × 1 × tan (12)°
⇒ 1
Simplify
cot12° cot38° cot52° cot60° cot78°.
⇒ cot 12° cot 38° tan (90–52)° tan (90–78)°
⇒ cot 12° cot 38° tan (38)° tan (12)°
⇒ cot 12° × 1 × tan (12)°
⇒ 1
Find A if
(i) sin A = cos 30°
(ii) tan49° = cot A
(iii) tan A tan 35° = 1
(iv) sec 35° = cosec A
(v) cosec A cos 43° = 1
(vi) sin 20° tan A sec 70° = √3
(i) sin A = sin (90–30)°
⇒ sin A = sin 60°
⇒ A = 60
(ii) cot(90–49) = cot A
⇒ cot 41 = cot A
⇒ A = 41
(iii) tan A = 1/ tan35°
⇒ tan A = cot 35°
⇒ tan A = tan (90–35)
⇒ tan A = tan 55
⇒ A = 55
(iv)cosec(90–35) = cosec A
⇒ cosec 55 = cosec A
⇒ A = 55
(v) cosec A = 1/ cos 43°
⇒ cosec A = sec 43°
⇒ cosec A = cosec (90–43)
⇒ cosec A = cosec 47
⇒ A = 47
(vi) sin 20° tan A cosec(90–70) = √3
⇒ sin 20° tan A cosec 20° = √3
⇒ tan A = √3
⇒ tan A = tan 60°
⇒ A = 60°
Find A if
(i) sin A = cos 30°
(ii) tan49° = cot A
(iii) tan A tan 35° = 1
(iv) sec 35° = cosec A
(v) cosec A cos 43° = 1
(vi) sin 20° tan A sec 70° = √3
(i) sin A = sin (90–30)°
⇒ sin A = sin 60°
⇒ A = 60
(ii) cot(90–49) = cot A
⇒ cot 41 = cot A
⇒ A = 41
(iii) tan A = 1/ tan35°
⇒ tan A = cot 35°
⇒ tan A = tan (90–35)
⇒ tan A = tan 55
⇒ A = 55
(iv)cosec(90–35) = cosec A
⇒ cosec 55 = cosec A
⇒ A = 55
(v) cosec A = 1/ cos 43°
⇒ cosec A = sec 43°
⇒ cosec A = cosec (90–43)
⇒ cosec A = cosec 47
⇒ A = 47
(vi) sin 20° tan A cosec(90–70) = √3
⇒ sin 20° tan A cosec 20° = √3
⇒ tan A = √3
⇒ tan A = tan 60°
⇒ A = 60°
Show that
cos 48° – sin 42° = 0
Simplifying the left hand side:
⇒ cos 48° – cos(90–42)
⇒ cos 48° – cos(48)°
⇒ 0
Which is equal to right hand side.
Hence proved.
Show that
cos 48° – sin 42° = 0
Simplifying the left hand side:
⇒ cos 48° – cos(90–42)
⇒ cos 48° – cos(48)°
⇒ 0
Which is equal to right hand side.
Hence proved.
Show that
cos 20° cos 70° – sin 70° sin 20° = 0
Simplifying the left hand side:
⇒ cos 20° cos 70° – cos(90–70)° cos (90–20)°
⇒ cos 20° cos 70° – cos 20° cos 70°
⇒ 0
Which is equal to right hand side.
Hence proved.
Show that
cos 20° cos 70° – sin 70° sin 20° = 0
Simplifying the left hand side:
⇒ cos 20° cos 70° – cos(90–70)° cos (90–20)°
⇒ cos 20° cos 70° – cos 20° cos 70°
⇒ 0
Which is equal to right hand side.
Hence proved.
Show that
sin (90° – θ)tan θ = sin θ
Simplifying the left hand side:
⇒ cos θ tan θ
⇒ cos θ (sin θ/cos θ)
⇒ sin θ
Which is equal to right hand side.
Hence proved.
Show that
sin (90° – θ)tan θ = sin θ
Simplifying the left hand side:
⇒ cos θ tan θ
⇒ cos θ (sin θ/cos θ)
⇒ sin θ
Which is equal to right hand side.
Hence proved.
Show that
Simplifying the left hand side:
⇒
⇒
⇒ 1
Which is equal to right hand side.
Hence proved.
Show that
Simplifying the left hand side:
⇒
⇒
⇒ 1
Which is equal to right hand side.
Hence proved.
Find the value of the following.
sin 26o
The relevant part of the sine table is given below.
From the table,
We have sin 26° = 0.43837 ≈ 0.4384
Find the value of the following.
sin 26o
The relevant part of the sine table is given below.
From the table,
We have sin 26° = 0.43837 ≈ 0.4384
Find the value of the following.
cos 72o
The relevant part of the cosine table is given below.
From the table,
We have cos 72° = 0.3090
Find the value of the following.
cos 72o
The relevant part of the cosine table is given below.
From the table,
We have cos 72° = 0.3090
Find the value of the following.
tan35o
The relevant part of the tangent table is given below.
From the table, we have
We have tan 35° = 0.7002
Find the value of the following.
tan35o
The relevant part of the tangent table is given below.
From the table, we have
We have tan 35° = 0.7002
Find the value of the following.
sin 75o 15’
We write sin 75° 15’ = sin 75° 12’ + 3’.
The relevant part of the sine table is given below.
From the table, we have
Sin 75° 12’ = 0.9668
Mean difference for 3’ = 0.0002
We know that mean difference is to be added in the case of sine.
∴ sin75° 15’ = 0.9668 + 0.0002 = 0.9670
Find the value of the following.
sin 75o 15’
We write sin 75° 15’ = sin 75° 12’ + 3’.
The relevant part of the sine table is given below.
From the table, we have
Sin 75° 12’ = 0.9668
Mean difference for 3’ = 0.0002
We know that mean difference is to be added in the case of sine.
∴ sin75° 15’ = 0.9668 + 0.0002 = 0.9670
Find the value of the following.
sin 12° 12’
The relevant part of the sine table is given below.
From the table, we have
Sin 12° 12’ = 0.2113
Find the value of the following.
sin 12° 12’
The relevant part of the sine table is given below.
From the table, we have
Sin 12° 12’ = 0.2113
Find the value of the following.
cos 12o 35’
We write cos 12° 35’ = cos 12° 30’ + 5’.
The relevant part of the cosine table is given below.
From the table, we have
cos 12° 30’ = 0.9763
Mean difference for 5’ = 0.0003
We know that mean difference is to be subtracted in the case of cosine.
∴ cos 12° 35’ = 0.9763 - 0.0003 = 0.9760
Find the value of the following.
cos 12o 35’
We write cos 12° 35’ = cos 12° 30’ + 5’.
The relevant part of the cosine table is given below.
From the table, we have
cos 12° 30’ = 0.9763
Mean difference for 5’ = 0.0003
We know that mean difference is to be subtracted in the case of cosine.
∴ cos 12° 35’ = 0.9763 - 0.0003 = 0.9760
Find the value of the following.
cos 40o 20’
We write cos 40° 20’ = cos 40° 18’ + 2’.
The relevant part of the cosine table is given below.
From the table, we have
cos 40° 18’ = 0.7627
Mean difference for 2’ = 0.0004
We know that mean difference is to be subtracted in the case of cosine.
∴ cos 40° 20’ = 0.7627 - 0.0004 = 0.7623
Find the value of the following.
cos 40o 20’
We write cos 40° 20’ = cos 40° 18’ + 2’.
The relevant part of the cosine table is given below.
From the table, we have
cos 40° 18’ = 0.7627
Mean difference for 2’ = 0.0004
We know that mean difference is to be subtracted in the case of cosine.
∴ cos 40° 20’ = 0.7627 - 0.0004 = 0.7623
Find the value of the following.
tan 10o 26’
We write tan 10° 26’ = tan 10° 24’ + 2’.
The relevant part of the tangent table is given below.
From the table, we have
tan 10° 24’ = 0.1835
Mean difference for 2’ = 0.0006
We know that mean difference is to be added in the case of tangent.
∴ tan 10° 26’ = 0.1835 + 0.0006 = 0.1841
Find the value of the following.
tan 10o 26’
We write tan 10° 26’ = tan 10° 24’ + 2’.
The relevant part of the tangent table is given below.
From the table, we have
tan 10° 24’ = 0.1835
Mean difference for 2’ = 0.0006
We know that mean difference is to be added in the case of tangent.
∴ tan 10° 26’ = 0.1835 + 0.0006 = 0.1841
Find the value of the following.
cot 20o
The relevant part of the cotangent table is given below.
From the table, we have
cot 20° = 2.7475
Find the value of the following.
cot 20o
The relevant part of the cotangent table is given below.
From the table, we have
cot 20° = 2.7475
Find the value of the following.
cot 400 20’
The relevant part of the cotangent table is given below.
From the table, we have
cot 40° 20’ = 1.17777 ≈ 1.1778
Find the value of the following.
cot 400 20’
The relevant part of the cotangent table is given below.
From the table, we have
cot 40° 20’ = 1.17777 ≈ 1.1778
Find the value of θ, if
(i) sinθ= 0.7009
(ii) cos θ = 0.9664
(iii) tan θ = 0.3679
(iv) cotθ = 0.2334
(v) tanθ = 63.6567
(i) From the sine table, we find 0.7009 is corresponding to sin 44° 30’.
⇒ sin 44° 30’ = 0.7009
∴ θ = 44° 30’
(ii) From the cosine table, we find 0.9664 is corresponding to cos 14° 54’.
⇒ cos 14° 54’ = 0.9664
∴ θ = 14° 54’
(iii) From the tangent table, we find 0.3679 is corresponding to tan 20° 12’.
⇒ tan 20° 12’ = 0.3679
∴ θ = 20° 12’
(iv) From the cotangent table, we find 0.2334 is corresponding to cot 76° 30’.
⇒ cot 76° 30’ = 0.2334
∴ θ = 76° 30’
(v) From the tangent table, we find 63.6567 is corresponding to tan 89° 6’.
⇒ tan 89° 6’ = 63.6567
∴ θ = 89° 6’
Find the value of θ, if
(i) sinθ= 0.7009
(ii) cos θ = 0.9664
(iii) tan θ = 0.3679
(iv) cotθ = 0.2334
(v) tanθ = 63.6567
(i) From the sine table, we find 0.7009 is corresponding to sin 44° 30’.
⇒ sin 44° 30’ = 0.7009
∴ θ = 44° 30’
(ii) From the cosine table, we find 0.9664 is corresponding to cos 14° 54’.
⇒ cos 14° 54’ = 0.9664
∴ θ = 14° 54’
(iii) From the tangent table, we find 0.3679 is corresponding to tan 20° 12’.
⇒ tan 20° 12’ = 0.3679
∴ θ = 20° 12’
(iv) From the cotangent table, we find 0.2334 is corresponding to cot 76° 30’.
⇒ cot 76° 30’ = 0.2334
∴ θ = 76° 30’
(v) From the tangent table, we find 63.6567 is corresponding to tan 89° 6’.
⇒ tan 89° 6’ = 63.6567
∴ θ = 89° 6’
Simplify, using trigonometric tables
sin 30°30’+cos 40°20’
First consider sin 30° 30’,
The relevant part of the sine table is given below.
From the table, we have
Sin 30° 30’ = 0.5075
Then consider cos 40° 20’,
We write cos 40° 20’ = cos 40° 18’ + 2’.
The relevant part of the cosine table is given below.
From the table, we have
cos 40° 18’ = 0.7627
Mean difference for 2’ = 0.0004
We know that mean difference is to be subtracted in the case of cosine.
∴ cos 40° 20’ = 0.7627 - 0.0004 = 0.7623
∴ sin 30° 30’ + cos 40° 20’ = 0.5075 + 0.7623 = 1.2698
Simplify, using trigonometric tables
sin 30°30’+cos 40°20’
First consider sin 30° 30’,
The relevant part of the sine table is given below.
From the table, we have
Sin 30° 30’ = 0.5075
Then consider cos 40° 20’,
We write cos 40° 20’ = cos 40° 18’ + 2’.
The relevant part of the cosine table is given below.
From the table, we have
cos 40° 18’ = 0.7627
Mean difference for 2’ = 0.0004
We know that mean difference is to be subtracted in the case of cosine.
∴ cos 40° 20’ = 0.7627 - 0.0004 = 0.7623
∴ sin 30° 30’ + cos 40° 20’ = 0.5075 + 0.7623 = 1.2698
Simplify, using trigonometric tables
tan 45° 27’ + sin 20°
First we consider tan 45° 27’.
We write tan 45° 27’ = tan 45° 24’ + 3’.
The relevant part of the tangent table is given below.
From the table, we have
tan 45° 24’ = 1.0141
Mean difference for 3’ = 0.0018
We know that mean difference is to be added in the case of tangent.
∴ tan 45° 27’ = 1.0141 + 0.0018 = 1.0159
Then, consider sin 20°,
The relevant part of the sine table is given below.
From the table, we have
Sin 20° = 0.3420
∴ tan 45° 27’ + sin 20° = 1.0159 + 0.3240 = 1.3399
Simplify, using trigonometric tables
tan 45° 27’ + sin 20°
First we consider tan 45° 27’.
We write tan 45° 27’ = tan 45° 24’ + 3’.
The relevant part of the tangent table is given below.
From the table, we have
tan 45° 24’ = 1.0141
Mean difference for 3’ = 0.0018
We know that mean difference is to be added in the case of tangent.
∴ tan 45° 27’ = 1.0141 + 0.0018 = 1.0159
Then, consider sin 20°,
The relevant part of the sine table is given below.
From the table, we have
Sin 20° = 0.3420
∴ tan 45° 27’ + sin 20° = 1.0159 + 0.3240 = 1.3399
Simplify, using trigonometric tables
tan 63°12’ – cos 12°42’
First we consider tan 63° 12’,
The relevant part of the tangent table is given below.
From the table, we have
tan 63° 12’ = 1.9797
Then consider cos 12° 42’,
The relevant part of the cosine table is given below.
From the table, we have
cos 12° 42’ = 0.9755
∴ tan 63° 12’ – cos 12° 42’ = 1.9797 – 0.9755 = 1.0042
Simplify, using trigonometric tables
tan 63°12’ – cos 12°42’
First we consider tan 63° 12’,
The relevant part of the tangent table is given below.
From the table, we have
tan 63° 12’ = 1.9797
Then consider cos 12° 42’,
The relevant part of the cosine table is given below.
From the table, we have
cos 12° 42’ = 0.9755
∴ tan 63° 12’ – cos 12° 42’ = 1.9797 – 0.9755 = 1.0042
Simplify, using trigonometric tables
sin 50° 26’ + cos 18° + tan 70° 12’
First, we consider sin 50° 26’,
We write sin 50° 26’ = sin 50° 24’ + 2’.
The relevant part of the sine table is given below.
From the table, we have
Sin 50° 24’ = 0.7705
Mean difference for 2’ = 0.0004
We know that mean difference is to be added in the case of sine.
∴ sin50° 26’ = 0.7705 + 0.0004 = 0.7709
Now consider cos 18°,
The relevant part of the cosine table is given below.
From the table, we have
cos 18° = 0.9511
Then consider tan 70° 12’,
The relevant part of the tangent table is given below.
From the table, we have
tan 70° 12’ = 2.7776
∴ sin 50° 26’ + cos 18° + tan 70° 12’ = 0.7709 + 0.9511 + 2.7776 = 4.4996
Simplify, using trigonometric tables
sin 50° 26’ + cos 18° + tan 70° 12’
First, we consider sin 50° 26’,
We write sin 50° 26’ = sin 50° 24’ + 2’.
The relevant part of the sine table is given below.
From the table, we have
Sin 50° 24’ = 0.7705
Mean difference for 2’ = 0.0004
We know that mean difference is to be added in the case of sine.
∴ sin50° 26’ = 0.7705 + 0.0004 = 0.7709
Now consider cos 18°,
The relevant part of the cosine table is given below.
From the table, we have
cos 18° = 0.9511
Then consider tan 70° 12’,
The relevant part of the tangent table is given below.
From the table, we have
tan 70° 12’ = 2.7776
∴ sin 50° 26’ + cos 18° + tan 70° 12’ = 0.7709 + 0.9511 + 2.7776 = 4.4996
Simplify, using trigonometric tables
tan 72° + cot 30°
First we consider tan 72°,
The relevant part of the tangent table is given below.
From the table, we have
tan 72° = 3.0777
Then consider cot 30°,
The relevant part of the cotangent table is given below.
From the table, we have
cot 30° = 1.73205
∴ tan 72° + cot 30° = 3.0777 + 1.73205 = 4.80975 ≈ 4.8098
Simplify, using trigonometric tables
tan 72° + cot 30°
First we consider tan 72°,
The relevant part of the tangent table is given below.
From the table, we have
tan 72° = 3.0777
Then consider cot 30°,
The relevant part of the cotangent table is given below.
From the table, we have
cot 30° = 1.73205
∴ tan 72° + cot 30° = 3.0777 + 1.73205 = 4.80975 ≈ 4.8098
Find the area of the right triangle with hypotenuse 20cm and one of the acute angle is 48°
From the above figure,
⇒ sin θ =
⇒ sin 48° =
From the sine table, sin 48° = 0.7431.
∴ 0.7431 =
∴ AB = 0.7431 × 20 = 14.862 cm
Then cos θ =
⇒ cos 48° =
From the cosine table, cos 48° = 0.6691
∴ 0.6691 =
∴ BC = 0.6691 × 20 = 13.382 cm
We know that Area of right angled triangle = 1/2 bh.
∴ Area of ΔABC = 1/2 × 13.382 × 14.862
= 99.441642
∴ Area of the triangle is 99.441 cm2.
Find the area of the right triangle with hypotenuse 20cm and one of the acute angle is 48°
From the above figure,
⇒ sin θ =
⇒ sin 48° =
From the sine table, sin 48° = 0.7431.
∴ 0.7431 =
∴ AB = 0.7431 × 20 = 14.862 cm
Then cos θ =
⇒ cos 48° =
From the cosine table, cos 48° = 0.6691
∴ 0.6691 =
∴ BC = 0.6691 × 20 = 13.382 cm
We know that Area of right angled triangle = 1/2 bh.
∴ Area of ΔABC = 1/2 × 13.382 × 14.862
= 99.441642
∴ Area of the triangle is 99.441 cm2.
Find the area of the triangle with hypotenuse 8cm and one of the acute angle is 57°
From the above figure,
⇒ sin θ =
⇒ sin 57° =
From the sine table, sin 57° = 0.8387.
∴ 0.8387 =
∴ AB = 0.8387 × 8 = 6.7096 cm
Then cos θ =
⇒ cos 57° =
From the cosine table, cos 57° = 0.5446
∴ 0.5446 =
∴ BC = 0.5446 × 8 = 4.3568 cm
We know that Area of right angled triangle = 1/2 bh.
∴ Area of ΔABC = 1/2 × 4.3568 × 6.7096
= 14.616192
∴ Area of the triangle is 14.62 cm2 (Approximately).
Find the area of the triangle with hypotenuse 8cm and one of the acute angle is 57°
From the above figure,
⇒ sin θ =
⇒ sin 57° =
From the sine table, sin 57° = 0.8387.
∴ 0.8387 =
∴ AB = 0.8387 × 8 = 6.7096 cm
Then cos θ =
⇒ cos 57° =
From the cosine table, cos 57° = 0.5446
∴ 0.5446 =
∴ BC = 0.5446 × 8 = 4.3568 cm
We know that Area of right angled triangle = 1/2 bh.
∴ Area of ΔABC = 1/2 × 4.3568 × 6.7096
= 14.616192
∴ Area of the triangle is 14.62 cm2 (Approximately).
Find the area of isosceles triangle with base 16cm and vertical angle 60° 40’
Draw CD perpendicular to AB.
∴ D is the midpoint of AB and ∠ACB = 60° 40’
Then ∠ACD = = 30° 20’ = ∠BCD
In right angled triangle ACD,
⇒ tan 30° 20’ =
⇒ tan 30° 20’ =
From tangent table, tan 30° 18’ = 0.5844 and Mean difference of 2’ = 0.0008.
∴ tan 30° 20’ = 0.5844 + 0.0008 = 0.5852
⇒ CD = 8 ÷ 0.5852 = 13.672 cm
We know that Area of right angled triangle = 1/2 bh.
⇒ Area of ΔACD = 1/2 × 8 × 13.672 = 54.688 cm2
Since ΔABC is isosceles, area of ΔACD = area of ΔBCD = 54.688 cm2.
∴ Area of ΔABC = Area of (ΔACD + ΔBCD)
= 54.688 + 54.688
= 109.376 cm2
∴ The area of given isosceles triangle = 109.376 cm2.
Find the area of isosceles triangle with base 16cm and vertical angle 60° 40’
Draw CD perpendicular to AB.
∴ D is the midpoint of AB and ∠ACB = 60° 40’
Then ∠ACD = = 30° 20’ = ∠BCD
In right angled triangle ACD,
⇒ tan 30° 20’ =
⇒ tan 30° 20’ =
From tangent table, tan 30° 18’ = 0.5844 and Mean difference of 2’ = 0.0008.
∴ tan 30° 20’ = 0.5844 + 0.0008 = 0.5852
⇒ CD = 8 ÷ 0.5852 = 13.672 cm
We know that Area of right angled triangle = 1/2 bh.
⇒ Area of ΔACD = 1/2 × 8 × 13.672 = 54.688 cm2
Since ΔABC is isosceles, area of ΔACD = area of ΔBCD = 54.688 cm2.
∴ Area of ΔABC = Area of (ΔACD + ΔBCD)
= 54.688 + 54.688
= 109.376 cm2
∴ The area of given isosceles triangle = 109.376 cm2.
Find the area of isosceles triangle with base 15cm and vertical angle 80°
Draw CD perpendicular to AB.
∴ D is the midpoint of AB and ∠ACB = 80°
Then ∠ACD = = 40° = ∠BCD
In right angled triangle ACD,
⇒ tan 40° =
⇒ tan 40° =
From tangent table, tan 40° = 0.8391.
⇒ CD = 7.5 ÷ 0.8391 = 8.938 cm
We know that Area of right angled triangle = 1/2 bh.
⇒ Area of ΔACD = 1/2 × 7.5 × 8.938 = 33.5175 cm2
Since ΔABC is isosceles, area of ΔACD = area of ΔBCD = 33.5175 cm2.
∴ Area of ΔABC = Area of (ΔACD + ΔBCD)
= 33.5175 + 33.5715
= 67.035 cm2
∴ The area of given isosceles triangle = 67.035 cm2.
Find the area of isosceles triangle with base 15cm and vertical angle 80°
Draw CD perpendicular to AB.
∴ D is the midpoint of AB and ∠ACB = 80°
Then ∠ACD = = 40° = ∠BCD
In right angled triangle ACD,
⇒ tan 40° =
⇒ tan 40° =
From tangent table, tan 40° = 0.8391.
⇒ CD = 7.5 ÷ 0.8391 = 8.938 cm
We know that Area of right angled triangle = 1/2 bh.
⇒ Area of ΔACD = 1/2 × 7.5 × 8.938 = 33.5175 cm2
Since ΔABC is isosceles, area of ΔACD = area of ΔBCD = 33.5175 cm2.
∴ Area of ΔABC = Area of (ΔACD + ΔBCD)
= 33.5175 + 33.5715
= 67.035 cm2
∴ The area of given isosceles triangle = 67.035 cm2.
A ladder makes an angle 30° with the floor and its lower end is 12m away from the wall. Find the length of the ladder.
Let AC be the length of the ladder.
AB is the distance between the foot of the ladder and the wall = 12m
In ΔABC,
⇒ cos 30° =
⇒ cos 30° =
From cosine table, cos 30° = 0.8660
⇒ 0.8660 =
⇒ AC = = 13.856 m
∴ The length of the ladder is 13.856 m.
A ladder makes an angle 30° with the floor and its lower end is 12m away from the wall. Find the length of the ladder.
Let AC be the length of the ladder.
AB is the distance between the foot of the ladder and the wall = 12m
In ΔABC,
⇒ cos 30° =
⇒ cos 30° =
From cosine table, cos 30° = 0.8660
⇒ 0.8660 =
⇒ AC = = 13.856 m
∴ The length of the ladder is 13.856 m.
Find the angle made by a ladder of length 4m with the ground if its one end is 2m away from the wall and the other end is on the wall.
Let θ be the angle made by the ladder with the ground.
AB is the length of the ladder = 4m
AC is the distance between end of ladder and the wall = 2m
In ΔABC,
⇒ cos θ =
⇒ cos θ = = 1/2 = 0.5
From cosine table, we find 0.5 is corresponding to cos 60°.
⇒ cos θ = cos 60°
∴ θ = 60°
∴ The angle made by the ladder with the ground is 60°.
Find the angle made by a ladder of length 4m with the ground if its one end is 2m away from the wall and the other end is on the wall.
Let θ be the angle made by the ladder with the ground.
AB is the length of the ladder = 4m
AC is the distance between end of ladder and the wall = 2m
In ΔABC,
⇒ cos θ =
⇒ cos θ = = 1/2 = 0.5
From cosine table, we find 0.5 is corresponding to cos 60°.
⇒ cos θ = cos 60°
∴ θ = 60°
∴ The angle made by the ladder with the ground is 60°.
Find the length of the chord of a circle of radius 5cm subtending an angle of 108° at the centre.
Let AB be the chord of a circle of radius 5 cm with O as centre.
Draw OC perpendicular to AB.
∴ C is the midpoint of AB and ∠AOB = 108°
Then ∠AOC = = 54°
In right angled triangle OCA,
⇒ sin 54° =
⇒ sin 54° =
⇒ AC = sin 54° × 5
= 0.8090 × 5
= 4.045 cm
∴ Length of the chord AB = AC × 2 = 4.045 × 2 = 8.90 cm
Find the length of the chord of a circle of radius 5cm subtending an angle of 108° at the centre.
Let AB be the chord of a circle of radius 5 cm with O as centre.
Draw OC perpendicular to AB.
∴ C is the midpoint of AB and ∠AOB = 108°
Then ∠AOC = = 54°
In right angled triangle OCA,
⇒ sin 54° =
⇒ sin 54° =
⇒ AC = sin 54° × 5
= 0.8090 × 5
= 4.045 cm
∴ Length of the chord AB = AC × 2 = 4.045 × 2 = 8.90 cm
Find the length of the side of regular polygon of 12 sides inscribed in a circle of radius 6cm.
Let AB be a side of the regular polygon with 12 sides in the circle of radius 6 cm.
If O is a centre of the circle, then ∠AOB = = 30°
Draw OC perpendicular to AB.
Then ∠AOC = = 15°
⇒ sin 15° = =
⇒ 0.2588 =
⇒ AC = 0.2588 × 6 = 1.5528
∴ Length of the side AB = 2 × AC = 2 × 1.5528 = 3.1056 cm
Find the length of the side of regular polygon of 12 sides inscribed in a circle of radius 6cm.
Let AB be a side of the regular polygon with 12 sides in the circle of radius 6 cm.
If O is a centre of the circle, then ∠AOB = = 30°
Draw OC perpendicular to AB.
Then ∠AOC = = 15°
⇒ sin 15° = =
⇒ 0.2588 =
⇒ AC = 0.2588 × 6 = 1.5528
∴ Length of the side AB = 2 × AC = 2 × 1.5528 = 3.1056 cm
Find the radius of the incircle of a regular hexagon of side 24cm.
Let AB be the side of the regular hexagon and let O be the centre of the incircle.
Draw OC perpendicular to AB.
If r is the radius of the circle, then OC = r.
We know that total sum of angles of a regular polygon = 360°
So, ∠AOB = = 60°
∴ ∠AOC = = 30°
⇒ tan 30° =
⇒ =
⇒ r = 12 × 1.732 = 20.784 cm
Hence, radius of incircle is 20.784 cm.
Find the radius of the incircle of a regular hexagon of side 24cm.
Let AB be the side of the regular hexagon and let O be the centre of the incircle.
Draw OC perpendicular to AB.
If r is the radius of the circle, then OC = r.
We know that total sum of angles of a regular polygon = 360°
So, ∠AOB = = 60°
∴ ∠AOC = = 30°
⇒ tan 30° =
⇒ =
⇒ r = 12 × 1.732 = 20.784 cm
Hence, radius of incircle is 20.784 cm.
The value of sin260° + cos260° is equal to
A. sin245° + cos245°
B. tan245° + cot245°
C. sec290°
D. 0
We know,
∴
⇒ .
Comparing the above result with the given options, we find that
A. is the correct option because,
⇒
B. is incorrect because,
⇒
C. is incorrect because,
is not defined.
⇒
D. is incorrect because,
The value of sin260° + cos260° is equal to
A. sin245° + cos245°
B. tan245° + cot245°
C. sec290°
D. 0
We know,
∴
⇒ .
Comparing the above result with the given options, we find that
A. is the correct option because,
⇒
B. is incorrect because,
⇒
C. is incorrect because,
is not defined.
⇒
D. is incorrect because,
If x = , then the value of x is
A. tan 45°
B. tan 30°
C. tan 60°
D. tan 90°
Using in the given expression,
⇒
Comparing the above results with the given options, we find that
A. is incorrect because,
B. is incorrect because,
C. is the correct option because,
D. is incorrect because,
If x = , then the value of x is
A. tan 45°
B. tan 30°
C. tan 60°
D. tan 90°
Using in the given expression,
⇒
Comparing the above results with the given options, we find that
A. is incorrect because,
B. is incorrect because,
C. is the correct option because,
D. is incorrect because,
The value of sec245° – tan245° is equal to
A. sin260° – cos260°
B. sin2 45° + cos2 60
C.sec2 60° - tan2 60°
D. 0
We know,
∴
⇒ .
Comparing the above result with the given options, we find that
A. is incorrect because,
⇒
B. is incorrect because,
⇒
C. is the correct option because,
⇒
D. is incorrect because,
The value of sec245° – tan245° is equal to
A. sin260° – cos260°
B. sin2 45° + cos2 60
C.sec2 60° - tan2 60°
D. 0
We know,
∴
⇒ .
Comparing the above result with the given options, we find that
A. is incorrect because,
⇒
B. is incorrect because,
⇒
C. is the correct option because,
⇒
D. is incorrect because,
The value of 2sin30° cos30° is equal to
A. tan 30°
B. cos 60°
C. sin 60°
D. cot 60°
We know,
∴
⇒
Comparing the above result with the given options, we find that
A. is incorrect because,
B. is incorrect because,
C. is the correct option because,
D. is incorrect because,
The value of 2sin30° cos30° is equal to
A. tan 30°
B. cos 60°
C. sin 60°
D. cot 60°
We know,
∴
⇒
Comparing the above result with the given options, we find that
A. is incorrect because,
B. is incorrect because,
C. is the correct option because,
D. is incorrect because,
The value of cosec2 60° – 1 is equal to
A. cos2 60°
B. cot2 60°
C. sec2 60°
D. tan2 60°
We know,
∴
⇒
Comparing the above result with the given options, we find that
A. is incorrect because,
B. is the correct option because,
C. is incorrect because,
D. is incorrect because,
The value of cosec2 60° – 1 is equal to
A. cos2 60°
B. cot2 60°
C. sec2 60°
D. tan2 60°
We know,
∴
⇒
Comparing the above result with the given options, we find that
A. is incorrect because,
B. is the correct option because,
C. is incorrect because,
D. is incorrect because,
cos60° cos30° – sin60° sin30° is equal to
A. cos 90°
B. cosec 90°
C. sin 30° + cos 30°
D. tan 90°
We know, and
∴
⇒ .
Comparing the above result with the given options, we find that
A. is the correct because,
B. is incorrect because,
C. is incorrect because,
D. is incorrect because,
cos60° cos30° – sin60° sin30° is equal to
A. cos 90°
B. cosec 90°
C. sin 30° + cos 30°
D. tan 90°
We know, and
∴
⇒ .
Comparing the above result with the given options, we find that
A. is the correct because,
B. is incorrect because,
C. is incorrect because,
D. is incorrect because,
The value of is
A.0
B. 1
C. tan 27°
D. cot 63°
We know,
∴
⇒
Hence option B is correct.
Note: Alternatively, the identity could also have been used.
The value of is
A.0
B. 1
C. tan 27°
D. cot 63°
We know,
∴
⇒
Hence option B is correct.
Note: Alternatively, the identity could also have been used.
If cos x = sin 43°, then the value of x is
A. 57°
B. 43°
C. 47°
D. 90°
We know,
∴
So, C is the correct option.
If cos x = sin 43°, then the value of x is
A. 57°
B. 43°
C. 47°
D. 90°
We know,
∴
So, C is the correct option.
The value of sec 29° – cosec 61° is
A. 1
B. 0
C. sec 60°
D. cosec 29°
We know,
∴
⇒
Using the above result,
So, B is the correct option.
Note: Alternatively, the identity could also have been used.
The value of sec 29° – cosec 61° is
A. 1
B. 0
C. sec 60°
D. cosec 29°
We know,
∴
⇒
Using the above result,
So, B is the correct option.
Note: Alternatively, the identity could also have been used.
If 3x cosec 36° = sec 54°, then the value of x is
A. 0
B. 1
C.
D.
It is given that,
Using
∴
⇒
And so, can be rewritten as
i.e
∴
So, C is the correct option.
Note: Alternatively, the identity could also have been used.
If 3x cosec 36° = sec 54°, then the value of x is
A. 0
B. 1
C.
D.
It is given that,
Using
∴
⇒
And so, can be rewritten as
i.e
∴
So, C is the correct option.
Note: Alternatively, the identity could also have been used.
The value of sin60° cos30° + cos60° sin30° is equal to
A. sec 90°
B. tan 90°
C. cos 60°
D. sin 90°
We know, and
∴
⇒ .
Comparing the above result with the given options, we find that
A. is incorrect because,
B. is incorrect because,
C. is incorrect because,
D. is the correct because,
The value of sin60° cos30° + cos60° sin30° is equal to
A. sec 90°
B. tan 90°
C. cos 60°
D. sin 90°
We know, and
∴
⇒ .
Comparing the above result with the given options, we find that
A. is incorrect because,
B. is incorrect because,
C. is incorrect because,
D. is the correct because,
If ,then the measure of A is
A. 90°
B. 60°
C. 45°
D. 30°
We know, and
Given
So,
⇒
⇒
So, B is the correct option.
If ,then the measure of A is
A. 90°
B. 60°
C. 45°
D. 30°
We know, and
Given
So,
⇒
⇒
So, B is the correct option.
The value of is
A.
B.
C. 0
D. 1
We know,
Using the above result,
So, D is the correct option.
Note: Alternatively, the identity could also have been used.
The value of is
A.
B.
C. 0
D. 1
We know,
Using the above result,
So, D is the correct option.
Note: Alternatively, the identity could also have been used.
The value of sin 60° – cos 30° is
A. 0
B.
C.
D. 1
We know,
So,
So, A is the correct option.
The value of sin 60° – cos 30° is
A. 0
B.
C.
D. 1
We know,
So,
So, A is the correct option.
The value of cos230° – sin230° is
A. cos 60°
B. sin 60°
C. 0
D. 1
We know,
So,
⇒
Comparing the above result with the given options, we find that
A. is the correct option because,
B. is incorrect because,
C. is incorrect because,
D. is incorrect because,
The value of cos230° – sin230° is
A. cos 60°
B. sin 60°
C. 0
D. 1
We know,
So,
⇒
Comparing the above result with the given options, we find that
A. is the correct option because,
B. is incorrect because,
C. is incorrect because,
D. is incorrect because,