Find the value of the following:
2 sin 45° . cos 45°
∴ 2 sin 45° .cos 45°
=
= 1
Find the value of the following:
cos 45° cos 60° – sin 45° sin 60°
∴cos 45° cos 60° - sin 45° sin 60°
Find the value of the following:
sin230° + 2 cos245° + 3 tan260°
tan60° = √3
∴
∴ sin230° + 2cos245° + 3tan260°
Find the value of the following:
3 sin 60° – 4 sin360°
Let θ = 60°
then,
3 sin 60° – 4 sin360°
= 3sinθ - 4sin3θ
We know that
Sin3θ = 3sinθ - 4sin3θ
⇒ 3 sin 60° – 4 sin360°
= sin(3 × 60° )
= sin 180°
= 0
Find the value of the following:
tan45° = 1
∴ tan245° = 1
∴
=
Find the value of the following:
4cot245° – sec260° + sin260° + cos290°
cot45° = 1
∴ cot245° = 1
sec60° = 2
∴ sec260° = 4
cos90° = 0
∴ cos290° = 0
∴4cot245° – sec260° + sin260° + cos290°
Find the value of the following:
cot30° = √3
∴ cot230° = 3
∴
Find the value of the following:
tan 60° = √3
tan260° = 3
sin90° = 1
∴ sin290° = 1
Find the value of the following:
sin90° = 1
cos0° = 1
tan60° = √3
∴
=
Find the value of the following:
∴
=
=
= √3
Find the value of x in the following:
cos x = cos 60° cos 30° + sin 60° sin 30°
We know that,
Cos(A - B) = cosAcosB + sinAsinB
Let A = 60°, B = 30°
Then,
cos 60° cos 30° + sin 60° sin 30°
= cos(A - B)
= cos(60° - 30° )
= cos30°
∴cos x = cos 60° cos 30° + sin 60° sin 30°
⇒ cos x = cos 30°
⇒ x = 30°
Find the value of x in the following:
sin 2x = sin 60° cos 30° – cos 60° – sin 30°
We know that,
sin(A - B) = sinAcosB - cosAsinB
LetA = 60°, B = 30°
Then,
sin 60° cos 30° – cos 60°sin 30°
= sin(60° - 30° )
= sin30°
∴sin 2x = sin 60° cos 30° – cos 60°sin 30°
⇒ sin 2x = sin30°
⇒ 2x = 30°
⇒ x = 15°
Find the value of x in the following:
√3 tan 2x = sin 30° + sin 45° cos 45° + 2 sin 90°
sin90° = 1
∴sin 30° + sin 45° cos 45° + 2 sin 90°
= 3
∴tan 2x = sin 30° + sin 45° cos 45° + 2 sin 90°
⇒ √3tan2x = 3
⇒ tan2x = √3
But, tan60° = √3
⇒ tan2x = tan60°
⇒ 2x = 60°
⇒
⇒ x = 30°
Prove that-
∴LHS =
=
RHS =
∴ LHS = RHS
∴
Hence Proved
Prove that-
Cot45° = 1
∴ cot245° = 1
Sec60° = 2
∴ sec260° = 4
∴ LHS = 4cot245° - sec260° - sin230°
RHS =
∴ LHS = RHS
∴
Hence Proved
Prove that-
sin 30° tan260° + 3cos 60° tan 45° = 2sec245° – cosec290°
tan45° = 1
sec45° = √2
∴ sec245° = 2
cosec90° = 1
∴ cosec290° = 1
∴ LHS = sin30° tan260° + 3cos60°tan45°
=
RHS
2sec245° – cosec290°
= 2(2) – 1
= 3
RHS = LHS
Henc, Proved!
Prove that-
cosec45° = √2
∴ cosec245° = 2
∴
sin90° = 1
∴ sin390° = 1
∴ LHS = cosec245° .sec230° sin390° cos60°
= RHS
∴ LHS = RHS
∴
Hence Proved
Prove that-
tan60° = √3
tan45° = 1
LHS =
(sin60° + sin30° )/(sin60° - sin30° )
RHS =
=
∴ LHS = RHS
∴
Hence Proved
Prove that-
2(cos245° + tan260°) – 6(sin245° – tan230°) = 6
tan60° = √3
∴ tan260° = 3
∴ LHS =
= 7 - 1
= 6
= RHS
∴ LHS = RHS
∴(cos245° + tan260°) – 6(sin245° – tan230°) = 6
Hence Proved
Prove that-
(sec230° + cosec245°) (2cos 60° + sin 90° + tan 45°) = 10
cosec45° = √2
∴ cosec245° = 2
sin90° = 1
tan45° = 1
∴ LHS = (sec230° + cosec245°) (2cos 60° + sin 90° + tan 45°)
= 10 = RHS
∴ LHS = RHS
∴(sec230° + cosec245°) (2cos 60° + sin 90° + tan 45°) = 10
Hence Proved
Prove that-
∴LHS =
= RHS
∴ LHS = RHS
∴
Hence, Proved
Prove that-
cos20° – 2 cot230° + 3 cosec290° = 2(sec245° – tan260°)
cos0° = 1
∴ cos20° = 1
cot30° = √3
∴ cot230° = 3
cosec90° = 1
∴ cosec290° = 1
sec45° = √2
∴ sec245° = 2
tan60° = √3
tan260° = 3
∴ LHS = cos20° – 2 cot230° + 3 cosec290°
= 1 - 2 × 3 + 3 × 1
= 1 - 6 + 3
= 4 - 6
= - 2
RHS = 2(sec245° – tan260°)
= 2 × (2 - 3)
= 2 × ( -1)
= - 2
- 2 = - 2
∴ LHS = RHS
∴cos20° – 2 cot230° + 3 cosec290° = 2(sec245° – tan260°)
Hence Proved
If x = 30°, then prove that
sin3x = 3sinx – 4 sin3x
For x= 30°,
LHS = sin (3×30°)
= sin (90°)
=1
RHS = 3sin30° - 4× (sin30°)3
Since LHS = RHS
sin3x = 3sinx – 4 sin3x
Hence proved.
If x = 30°, then prove that
For, x = 30°,
LHS = tan2x = tan(2 × 30°) = tan60° = √3
RHS =
√3 = √3
∴ LHS = RHS
Hence Proved
If x = 30°, then prove that
For x = 30°
LHS =
RHS =
∴ LHS = RHS
∴
Hence, Proved
If x = 30°, then prove that
cos3x = 4 cos3x – 3cosx
For x = 30°
LHS = cos(3 × 30° ) = cos90° = 0
RHS = 4 cos3x – 3cosx
= 4 cos330°– 3 cos30°
∴4 cos330°– 3 cos30°
=
= 0
Since, 0 = 0
∴ LHS = RHS
∴cos3x = 4 cos3x – 3cosx
Hence Proved
If A = 60° and B = 30° then prove that
For A = 60° and B = 30°
LHS = cot(A - B) = cot(60° - 30° ) = cot30° = √3
RHS =
= √3
√3 = √3
∴ LHS = RHS
∴
Hence Proved
The value of tan2 60° is:
A. 3
B.
C. 1
D. ∞
tan60° = √3
∴ tan260° = (tan60°)2 = (√3)2 = 3
The value of 2 sin260° cos60° will be:
A.
B.
C.
D.
∴2 sin260° cos60°
If then the value of θ is:
A.
B.
C.
D.
The value of cos245° will be:
A.
B.
C.
D.
If θ = 45° then the value of is:
A. 0
B. 1
C. 2
D. ∞
For θ = 45°
cos2θ = cos(2 × 45° ) = cos90° = 0
sin2θ = sin(2 × 45° ) = sin90° = 1
= 1
Prove that:
cos60° = 2 cos230° – 1
LHS =
RHS =
2cos230° - 1
∴ LHS = RHS
∴cos60° = 2 cos230° – 1
Hence Proved
Prove that:
∴ LHS
= sin60°
RHS =
∴ LHS = RHS
∴
∴ Hence Proved
Prove that:
∴ LHS =
cos60°
RHS =
∴ LHS = RHS
Hence Proved
Prove that:
(sin45° + cos45°)2 = 2
LHS:
(sin45° + cos45°)2
= (√2)2
= 2
= RHS
Hence Proved!
Prove that:
4 tan30° sin45° sin60° sin90° = √2
sin90° = 1
LHS =
4 tan30° sin45° sin60° sin90°
= √2
= RHS
Hence Proved!
Find the value of sin260° cot260°.
∴sin260° cot260°
Find the value of 4cos330° – 3 cos30°.
For θ = 30°,
4cos330° – 3 cos30° = 4cos3θ– 3cosθ
We know that,
cos3θ = 4cos3θ– 3cosθ
∴ 4cos330° – 3 cos30°
= cos(3 × 30° )
= cos90°
= 0
∴ LHS =
∴
= RHS
∴ LHS = RHS
Hence Proved
Prove that 3(tan230° + cot230°) – 8(sin245° + cos230°) = 0
cot30° = √3
∴ cot230° = 3
∴ LHS =
3(tan230° + cot230°) – 8(sin245° + cos230°)
= 10 - 10
= 0
= RHS
∴ LHS = RHS
Hence Proved
Prove that 4(sin430° + cos60°) – 3(cos245° – sin290°) =
sin90° = 1
sin290° = 1
∴ LHS = 4(sin430° + cos60°) – 3(cos245° – sin290°)
RHS = LHS
Hence Proved
Prove that
∴ LHS =
Prove that 2(cos245° + tan260°) – 6(sin245° – tan230°) = 6
∴ LHS = 2(cos245° + tan260°) – 6(sin245° – tan230°)
= 7 – 1
= 6
= RHS
= Hence Proved.