Buy BOOKS at Discounted Price

Trigonometric Identities

Class 10th Mathematics Rajasthan Board Solution
Exercise 7.1
  1. Express all the trigonometric ratios ∠θ in terms of sec θ.
  2. Express the trigonometric ratios sin θ, sec θ, tan θ in terms of cot θ.…
  3. cos^2 θ + cos^2 θ.cot^2 θ = cot^2 θ Prove the following with the help of…
  4. sec θ (1 - sin θ) (sec θ + tan θ) = 1 Prove the following with the help of…
  5. cosec^2 θ + sec^2 θ = cosec^2 θ sec^2 θ Prove the following with the help of…
  6. root 1-sintegrate heta /1+sintegrate heta = sectheta -tantheta Prove the…
  7. root sec^2theta +cosec^2theta = tantheta +cottheta Prove the following with the…
  8. tanalpha +tanbeta /cotalpha +cotbeta = tanalp anbeta Prove the following with…
  9. 1+sintegrate heta /costheta = costheta /1+sintegrate heta = 2sectheta Prove the…
  10. sin^4theta -cos^4theta /sin^2theta -cos^2theta = 1 Prove the following with the…
  11. cottheta -tantheta = 1-2sin^2theta /sintegrate heta costheta Prove the…
  12. cos^4 θ + sin^4 θ = 1 - 2 cos^2 θ sin^2 θ Prove the following with the help of…
  13. (secθ - cosθ) (cotθ + tanθ) = tanθsecθ Prove the following with the help of…
  14. 1-tan^2alpha /cot^2alpha -1 = tan^2alpha Prove the following with the help of…
  15. sintegrate heta /1-costheta = 1+costheta /sintegrate heta Prove the following…
  16. sin^6 θ + cos^6 θ = 1 - 3sin^3 θ cos^2 θ Prove the following with the help of…
  17. tantheta /1-cottheta + cottheta /1-tantheta = 1+tantheta +cottheta Prove the…
  18. sinθ (1 + tanθ) + cosθ(1 + cotθ) = cosecθ + secθ Prove the following with the…
  19. sin^2 θ cosθ + tanθsinθ + cos^3 θ = secθ Prove the following with the help of…
  20. tantheta /1-cottheta + cottheta /1-tantheta = 1+sectheta +cosectheta Prove the…
  21. (sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2 A + cot^2 A Prove the…
  22. sin^8 θ - cos^8 θ = (sin^2 θ - cos^2 θ) (1- 2sin^2 θ cos^2 θ) Prove the…
  23. root sectheta +1/sectheta -1 = cottheta +cosectheta Prove the following with…
  24. (1+cottheta +tantheta) (sintegrate heta -costheta)/sec^3theta -cosec^3theta =…
  25. sintegrate heta +costheta /sintegrate heta -costheta + sintegrate heta…
  26. cosa/1-tana + sina/1-cota = sina+cosa Prove the following with the help of…
  27. (coseca-sina) (seca-cosa) = 1/tana+cota Prove the following with the help of…
  28. cos^2theta /1-tantheta + sin^3theta /sintegrate heta -costheta = 1+sintegrate…
  29. If sec θ + tan θ = P, then prove that p^2 - 1/p^2 + 1 = sintegrate heta Prove…
  30. cosa/cosb = m cosa/sinb = n then prove that (m^2 + n^2) cos^2 B = n^2 Prove the…
Exercise 7.2
  1. (i) cos37^circle /sin53^circle (ii) cosec32^circle /sec58^circle (iii)…
  2. Find the values of the following: (i) cosec 25 sec 65 (ii) cot 34 tan 56 (iii)…
  3. (i) sin 70° sin 20° - cos 20° cos 70° (ii) 2cos67^circle /sin23^circle -…
  4. (i) (sin35^circle /cos55^circle)^2 + (cos55^circle /sin35^circle)^2 -…
  5. (i) tan 12° cot 38° cot 52° cot 60° tan 78° (ii) tan 5° tan 25° tan 30° tan 65°…
  6. Express the following in terms of the trigonometric ratios of angles between 0°…
  7. sin 65° + cos 25° = 2 cos 25° Prove the following:
  8. cos70^circle /sin20^circle + cos59^circle /sin31^circle - 8sin^230^circle = 0…
  9. sin (90^circle - theta) cos (90^circle - theta) = tantheta /1+tan^2theta Prove…
  10. cos (90^circle - theta) costheta /tantheta +cos^2 (90^circle - theta) = 1 Prove…
  11. tan (90^circle - theta) cottheta /cosec^2theta -cos^2theta = 0 Prove the…
  12. cos (90^circle - theta) sin (90^circle - theta)/tan (90^circle - theta) =…
  13. sintegrate heta cos (90^circle - theta) costheta /sec (90^circle - theta) +…
  14. If sin 3θ = cos (θ - 6°) where 3θ and (θ - 6°) are acute angles then find the…
  15. If sec 5θ = cosec (θ - 36°) where 5θ is an acute angle then find the value of…
  16. If A, B and C are the interior angles of any triangle ABC then prove that tan…
  17. If cos 2θ = sin 4θ are acute angles then find the value of θ.

Exercise 7.1
Question 1.

Express all the trigonometric ratios ∠θ in terms of sec θ.


Answer:

As we know


sin2 θ + cos2 θ = 1


⇒ sin2 θ = 1 – cos2θ


⇒ sin2 θ = 1 –


⇒ sin θ =


cos θ =


using the identity: sec2 θ – tan2 θ = 1


⇒ tan2 θ = sec2 θ – 1


tan θ =


cosec θ =


⇒ cosec θ =


⇒ cosec θ =


sec θ = sec θ


cot θ =



Question 2.

Express the trigonometric ratios sin θ, sec θ, tan θ in terms of cot θ.


Answer:

Using the identity: cosec2 θ – cot2 θ = 1


⇒ cosec θ =


sin θ =


⇒ sin θ =




⇒ sec θ =


⇒ sec θ =


tan θ =



Question 3.

Prove the following with the help of identities:

cos2θ + cos2θ.cot2θ = cot2θ


Answer:

Taking L.H.S we get,


cos2 θ + cos2 θ.cot2 θ


⇒ cos2 θ (1 + cot2 θ)


⇒ cos2 θ (1 + )


⇒ cos2 θ ()


Using the identity: 1 + tan2 θ = sec2 θ


⇒ cos2 θ () =


= cot2 θ


= R.H.S


Hence, proved.



Question 4.

Prove the following with the help of identities:

sec θ (1 – sin θ) (sec θ + tan θ) = 1


Answer:

Taking L.H.S we get,


sec θ (1 – sin θ) (sec θ + tan θ)


⇒ (sec θ – sec θ.sin θ) (sec θ + tan θ)


⇒ (sec θ – tan θ) (sec θ + tan θ)


Using the identity: (a + b) (a – b) = a2 – b2


⇒ sec2 θ – tan2 θ


= 1


= R.H.S


Hence, proved


Note: sin2 θ + cos2 θ = 1


sec2 θ – tan2 θ = 1


cosec2 θ – cot2 θ = 1



Question 5.

Prove the following with the help of identities:

cosec2θ + sec2θ = cosec2θ sec2θ


Answer:

Taking L.H.S we get,


cosec2 θ + sec2 θ



Taking L.C.M we get,




⇒ cosec2 θ.sec2 θ


= R.H.S


Hence, proved



Question 6.

Prove the following with the help of identities:



Answer:

To rationalizing the denominator multiply by the conjugate to both numerator and denominator: (1 – sin θ)


=



Using, cos2 θ = 1 – sin2 θ



⇒ sec θ – tan θ


= R.H.S


Hence, proved.



Question 7.

Prove the following with the help of identities:



Answer:

As we know,


Sec2 θ = 1 + tan2 θ and cosec2 θ = 1 + cot2 θ


Taking L.H.S we get,






Using the identity: (a + b)2 = a2 + b2 + 2.a.b



⇒ tan θ + cot θ


= R.H.S


Hence, proved



Question 8.

Prove the following with the help of identities:



Answer:

As we know,


cot α = and cot β =


Taking L.H.S we get,





⇒ tan α.tan β


= R.H.S


Hence, proved



Question 9.

Prove the following with the help of identities:



Answer:

L.H.S =



(Taking L.C.M and common denominator)




(Using the identity sin2 θ + cos2 θ = 1)



(Taking 2 common from numerator)


= 2 sec θ


= R.H.S


Hence, proved.



Question 10.

Prove the following with the help of identities:



Answer:

Taking L.H.S we get,



Using the identity: (a2 – b2) = (a – b)(a + b)



⇒ sin2 θ + cos2 θ (since, sin2θ + cos2θ = 1)


= 1 = R.H.S


Hence, proved.



Question 11.

Prove the following with the help of identities:



Answer:

As we know,


cot θ = and tan θ =


Taking L.H.S we get,


cot θ – tan θ =



Using: cos2 θ = 1 – sin2 θ




= R.H.S


Hence, proved.



Question 12.

Prove the following with the help of identities:

cos4θ + sin4θ = 1 – 2 cos2θ sin2θ


Answer:

Taking L.H.S we get,


Cos4 θ + sin4 θ


Using (a2 + b2) = (a + b)2 – 2.a.b


Where a = cos2 θ and b = sin2 θ


⇒ (cos2 θ + sin2 θ)2 – 2.cos2 θ.sin2 θ


⇒ 1 – 2.cos2 θ.Sin2 θ (Using: sin2 θ + cos2 θ = 1 )


= R.H.S


Hence, proved.



Question 13.

Prove the following with the help of identities:

(secθ – cosθ) (cotθ + tanθ) = tanθsecθ


Answer:

As we know,


sec θ = , cot θ = and tan θ =


Taking L.H.S we get,


(sec θ – cos θ)(cot θ + tan θ)


⇒ ()()


⇒ ()()


() (Using: cos2 θ + sin2 θ = 1 and 1 – cos2 θ = sin2 θ)



⇒ tan θ.sec θ


= R.H.S


Hence, proved.



Question 14.

Prove the following with the help of identities:



Answer:

Taking L.H.S we get,



Using: cot α =



( Taking the L.C.M)


= tan2 α = R.H.S


Hence, proved



Question 15.

Prove the following with the help of identities:



Answer:

Taking the L.H.S we get,



Multiplying by (1 + cos θ) to both numerator and denominator,



(Using: (a + b)(a – b) = a2 – b2)


(Using the identity: sin2 θ + cos2 θ = 1)



= R.H.S


Hence, proved.



Question 16.

Prove the following with the help of identities:

sin6θ + cos6θ = 1 – 3sin3θ cos2θ


Answer:

Using the identity: a3 + b3 = (a + b)(a2 + b2 – ab)


Here, a = sin2 θ and b = cos2 θ


⇒ (sin2 θ + cos2 θ)(sin4 θ + cos4 θ – sin2 θ.cos2 θ)


Now, Using: sin2θ + cos2θ = 1 and a2 + b2 = (a + b)2 – 2.a.b


⇒ (1)((sin2 θ + cos2 θ)2 – 2.sin2 θ.cos2 θ – sin2θ.cos2θ )


⇒ ((1)2 – 2.sin2 θ.cos2 θ – sin2 θ.cos2 θ)


⇒ (1 – 3.sin2 θ.cos2 θ)


= R.H.S


Hence, proved.



Question 17.

Prove the following with the help of identities:



Answer:

Taking L.H.S we get,





(Taking ‘–1’ common from denominator)



(Using: cot θ = )


(Using the identity: a3 –b3 = (a – b)(a2 + b2 + ab))



⇒ tan θ + cot θ +1


= R.H.S


Hence, proved.



Question 18.

Prove the following with the help of identities:

sinθ (1 + tanθ) + cosθ(1 + cotθ) = cosecθ + secθ


Answer:

Taking L.H.S we get,


sin θ (1 + ) + cos θ(1 + )



Taking L.C.M and using the identity sin2 θ + cos2 θ = 1.





⇒ sec θ + cosec θ


= R.H.S


Hence, proved.



Question 19.

Prove the following with the help of identities:

sin2θ cosθ + tanθsinθ + cos3θ = secθ


Answer:

Taking L.H.S we get,


Rearranging the terms ;


Sin2 θ.cos θ + cos3 θ + tan θ.sin θ


⇒ cos θ(sin2 θ + cos2 θ) + tan θ.sin θ


⇒ cos θ (1) +


⇒ cos θ +



= sec θ


= R.H.S


Hence, proved.



Question 20.

Prove the following with the help of identities:
= 1 + sec θ cosec θ


Answer:

Taking L.H.S we get,





Taking L.C.M and using: a3 – b3 = (a – b)(a2 + b2 + ab)





⇒ cot θ + tan θ + 1


+1


+ 1


⇒ cosec θ.sec θ + 1


= R.H.S


Hence, proved.


Question 21.

Prove the following with the help of identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2A + cot2A


Answer:

Taking L.H.S we get,


(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Expanding the terms using: (a + b)2 = a2 + b2 + 2.a.b


⇒ sin2 A + cosec2 A + 2.sin A.cosec A + cos2 A + sec2 A + 2.sec A.cos A


⇒ (sin2 A + cos2 A) + 2.sin A. + cosec2 A + sec2 A + 2.cos A.


⇒ 1 + 2 + cosec2 A + sec2 A + 2


⇒ 5 + (1 + cot2 A) + (1 + tan2 A)


⇒ 5 + 1 + 1 + tan2 A + cot2 A


⇒ 7 + tan2 A + cot2 A


= R.H.S


Hence, proved.



Question 22.

Prove the following with the help of identities:

sin8θ – cos8θ = (sin2θ – cos2θ) (1– 2sin2θ cos2θ)


Answer:

Taking L.H.S we get,


Sin8 θ– cos8 θ


Using the formula: a2 – b2 = (a – b)(a + b)


⇒ (sin4 θ – cos4 θ)(sin4 θ + cos4 θ)


⇒ (sin2 θ – cos2 θ)(sin2 θ + cos2 θ)((sin2 θ + cos2 θ)2 – 2.sin2 θ.cos2 θ)


⇒ (sin2 θ – cos2 θ)(1)((1)2 – 2.sin2 θ.cos2 θ) (Using: sin2 θ + cos2 θ = 1.)


⇒ (sin2 θ – cos2 θ)(1 – 2.sin2 θ.cos2 θ)


= R.H.S


Hence, proved



Question 23.

Prove the following with the help of identities:



Answer:

Taking the L.H.S we get,



Using: sec θ = and taking L.C.M



To rationalize the denominator multiply by (1 + cos θ) to both numerator and denominator.





⇒ cosec θ + cot θ


= R.H.S


Hence, proved.



Question 24.

Prove the following with the help of identities:





Answer:

Taking L.H.S we get,





(using: a3 – b3 = (a – b)(a2 + b2 + ab) and cancelling the term.)


⇒ sin2θ cos2θ


= RHS


Hence, Proved!



Question 25.

Prove the following with the help of identities:



=


Answer:

Taking L.H.S we get,



Taking L.C.M wee get,



As we know,


(a + b)2 + (a – b)2 = a2 + b2 + 2.a.b + a2 + b2 – 2.a.b


⇒ (a + b)2 + (a – b)2 = 2(a2 + b2)



=


And,





Hence, proved.



Question 26.

Prove the following with the help of identities:



Answer:

Taking the L.H.S we get,






(taking the L.C.M)


(using the identity: a2 – b2 = (a + b)(a – b))


= (cos A + sin A)


= R.H.S


Hence, proved.



Question 27.

Prove the following with the help of identities:



Answer:

Taking the L.H.S we get,


(cosec A – sin A)(sec A – cos A)
As cosecθ = 1/sinθ and secθ = 1/cosθ



As sin2θ + cos2 θ = 1



⇒ cos A.sin A

It can be written as


=
As cotθ = cosθ/sinθ and tanθ = sinθ/cosθ



= R.H.S


Hence, proved.


Question 28.

Prove the following with the help of identities:



Answer:

Taking L.H.S we get,


+





⇒ 1 + sin θ.cos θ


= R.H.S


Hence, proved.



Question 29.

Prove the following with the help of identities:

If sec θ + tan θ = P, then prove that


Answer:

Taking L.H.S we get,



Using the identity: (a + b)2 = a2 + b2 + 2.a.b


And sec2 θ – tan2 θ = 1






⇒ sin θ = R.H.S


Hence, proved.



Question 30.

Prove the following with the help of identities:

then prove that (m2 + n2) cos2B = n2


Answer:

Taking L.H.S we get,


()cos2 B


× cos2 B



= = n2


= R.H.S


Hence, proved.




Exercise 7.2
Question 1.

Find the values of the following:

(i)

(ii)

(iii)

(iv)


Answer:

Note:

cos (90˚ – θ) = sin θ

Sin (90˚ – θ) = cos θ



(i) ⇒ cos 37˚ = cos (90˚ – 53˚)


⇒ cos 37˚ = sin 53˚


= = 1.

Therefore, = 1

(ii) cosec 32˚ = cosec (90˚ – 58˚)


⇒ cosec 32˚ = sec 58˚


= = 1.

Therefore, = 1


(iii) tan 10˚ = tan (90˚ – 80˚)


⇒ tan 10˚ = cot 80˚


= = 1.


Therefore, = 1

(iv) cos 19˚ = cos (90˚ – 71˚)


⇒ cos 19˚ = sin 71˚


= = 1.

Therefore, = 1


Question 2.

Find the values of the following:
(i) cosec 25° – sec 65°

(ii) cot 34° – tan 56°

(iii)

(iv) sin θ cos(90° – θ) + cosθ sin(90° – θ)


Answer:

(i) cosec (90˚– 65˚) – sec 65˚


⇒ sec 65˚ – sec 65˚ (since, cosec (90˚ – θ) = sec θ)


= 0


(ii) cot (90˚ – 56˚) – tan 56˚


⇒ tan 56˚ – tan 56˚ (since, cot (90˚ – θ) = tan θ)


= 0.


(iii)



⇒ 1 – 1


= 0.


(iv)
sin θ cos(90° – θ) + cosθ sin(90° – θ)
⇒ sin θ.sin θ + cos θ.cos θ (since, cosec (90˚ – θ) = sec θ)


⇒ sin2 θ + cos2 θ


⇒ 1.


Question 3.

Find the values of the following:

(i) sin 70° sin 20° – cos 20° cos 70°

(ii)


Answer:

(i) Sin (90˚ – 20˚)sin 20˚ – cos 20˚ cos 70˚


⇒ cos 20˚ sin (90˚ – 70˚) – cos 20˚cos 70˚


⇒ cos 20˚cos 70˚ – cos 20˚cos 70˚


⇒ 0.


(ii)



⇒ 2 – 1 –




Question 4.

Find the values of the following:

(i)

(ii)


Answer:

(i) ()2 + ()2 – 2.cos 60˚


⇒ ()2 + – 1


⇒ 1 + 1 – 1


= 1


(ii)



⇒ 12 + 12


= 2.



Question 5.

Find the values of the following:

(i) tan 12° cot 38° cot 52° cot 60° tan 78°

(ii) tan 5° tan 25° tan 30° tan 65° tan 85°


Answer:

(i) tan 12˚.cot (90˚ – 52˚)cot 52˚cot 60˚tan (90˚–12˚)


⇒ tan 12˚cot 12˚ tan 52˚ cot 52˚ cot 60˚


⇒ tan 12˚××tan 52˚××



(ii) tan 5˚× tan 25˚× ×tan (90˚ – 25˚)tan (90˚–5˚)


⇒ tan 5˚×××tan 25˚×


⇒ 1× 1


=



Question 6.

Express the following in terms of the trigonometric ratios of angles between 0° and 45°.

(i) sin 81° + sin 71°

(ii) tan 68° + sec 68°


Answer:

(i) sin (90˚ – 9˚) + sin (90˚ – 19˚)


⇒ cos 9˚ + cos 19˚


(ii) tan (90˚ – 22˚) + sec (90˚ – 22˚)


⇒ cot 22˚ + cosec 22˚



Question 7.

Prove the following:

sin 65° + cos 25° = 2 cos 25°


Answer:

sin (90˚ – 25˚) + cos 25˚


⇒ cos 25˚ + cos 25˚


⇒ 2 cos 25˚


= R.H.S (Hence, proved.)



Question 8.

Prove the following:



Answer:

Taking L.H.S we get,





⇒ 1 + 1 –8 sin2 30˚


⇒ 2 – 8 ()2


⇒ 2 – 8.


⇒ 2 – 2 = 0.


= R.H.S


Hence, proved.



Question 9.

Prove the following:



Answer:

Taking L.H.S we get,


sin (90˚ – θ)cos(90˚ – θ)


⇒ cos θ.sin θ


(Writing 1 as sin2 θ + cos2 θ.)


Dividing by cos2 θ to both numerator and denominator





= R.H.S


Hence, proved.



Question 10.

Prove the following:



Answer:

Taking L.H.S we get,



⇒ cos2 θ + sin2 θ


⇒ 1


= R.H.S


Hence, proved.



Question 11.

Prove the following:



Answer:

Taking L.H.S we get,



– cos2 θ


⇒ cos2 θ – cos2 θ


= 0 = R.H.S


Hence, proved.



Question 12.

Prove the following:



Answer:

Taking L.H.S we get,





⇒ sin2 θ = R.H.S


Hence, proved.



Question 13.

Prove the following:



Answer:

Taking L.H.S we get,



⇒ sin3 θ.cos θ + cos3 θ.sin θ


⇒ sin θ.cos θ (sin2 θ + cos2 θ)


⇒ sin θ.cos θ = R.H.S


Hence, proved.



Question 14.

If sin 3θ = cos (θ – 6°) where 3θ and (θ – 6°) are acute angles then find the value of θ.


Answer:

As we know,


cos θ = sin (90˚ – θ)


⇒ sin 3θ = cos (θ – 6˚)


⇒ sin 3θ = sin (90˚ – (θ – 6˚))


⇒ sin 3θ = sin (90˚ – θ + 6˚)


⇒ sin 3θ = sin (96˚ – θ)


Since, 3θ is acute angle


So, 3θ = 96˚ – θ


⇒ 4θ = 96˚


⇒ θ = = 24˚



Question 15.

If sec 5θ = cosec (θ – 36°) where 5θ is an acute angle then find the value of θ.


Answer:

As we know,


cosec θ = sec (90˚ – θ)


⇒ sec 5θ = sec (90˚ – (θ – 36˚))


⇒ sec 5θ = sec (90˚ – θ + 36˚)


⇒ sec 5θ = sec (126˚ – θ)


Since, 5θ ia an acute angle.


⇒ 5θ = 126˚ – θ


⇒ 6θ = 126˚


⇒ θ = = 21˚



Question 16.

If A, B and C are the interior angles of any triangle ABC then prove that


Answer:

Given: A, B and C are the interior angles of triangle.


⇒ A + B + C = 180˚


⇒ B + C = 180˚ – A


Dividing by 2 both sides of above equation,


= 90˚ –


⇒ Taking Tangent both sides,


⇒ tan () = tan (90˚ – )


⇒ tan () = cot () (tan (90˚ – θ) = cot θ)


Hence, proved.



Question 17.

If cos 2θ = sin 4θ are acute angles then find the value of θ.


Answer:

As given 2θ and 4θ are acute angles.


⇒ cos 2θ = sin 4θ


⇒ sin (90˚ – 2θ) = sin 4θ


⇒ 90˚ – 2θ = 4θ


⇒ 6θ = 90˚


⇒ θ = = 15˚