If A + B + C = π, prove that
sin 2A + sin 2B – sin 2C = 4cos A cos B sin C
= sin 2A + sin 2B – sin 2C
= 2 sin ( B + C ) cos A + 2 sin ( A + C ) cos B - 2 sin ( A + B ) cos C
using formula,
sin (A + B) = sin A cos B + cos A sin B
= sin 2A + sin 2B - sin 2C
Using formula
sin2A = 2sinAcosA
= 2sinAcosA + 2sinBcosB - 2sinCcosC
since A + B + C = π
And sin(π – A) = sinA
= 2sin(B + C)cos A + 2sin(A + C)cosB - 2sin(A + B)cosC
= 2 ( sin B cos C + cos B sin C ) cos A + 2(sinAcosC + cosAsinC)cosB - 2(sinAcosB + cosAsinB )cosC
= 2cosAsinBcosC + 2cosAcosBsinC + 2sinAcosBcosC + 2cosAcosBsinC– 2sinAcosBcosC – 2cosAsinBcosC
= 2cosAcosBsinC + 2cosAcosBsinC
= 4cosAcosBsinC
= R.H.S
If A + B + C = π, prove that
cos 2A – cos 2B – cos 2C = -1 + 4 cos A sin B sin C
= cos2A – (cos2B + cos2C)
Using formula
= cos2A - {2cos(B+C)cos(B-C)}
since A + B + C = π
= cos2A – {2cos(π – A)cos(B-C)}
And cos(π – A) = -cosA
= cos2A – {-2cosAcos(B-C)}
= cos2A + 2cosAcos(B-C)
Using cos2A = 2cos2A -1
= 2cos2A – 1 + 2cosAcos(B-C)
= 2cosA{cosA + cos(B-C)} – 1
= 2cosA{2sinCsinB} – 1
= 4cosAsinBsinC – 1
= R.H.S
If A + B + C = π, prove that
cos 2A – cos 2B + cos 2C = 1 – 4sin A cos B sin C
= cos2A – cos2B + cos2C
Using,
= cos2A - {2sin(B+C)sin(B-C)}
since A + B + C = π
And sin(π – A) = sinA
= cos2A – {2sin(π – A)sin(B-C)}
= cos2A – {2sinAsin(B-C)}
= cos2A - 2sinAsin(B-C)
Using , cos2A = 1 – 2sin2A
= -2sin2A + 1 – 2sinAsin(B-C)
= -2sinA{sinA + sin(B-C)} + 1
= -2sinA{2cosCsinB} + 1
= -4sinAcosBsinC + 1
= R.H.S
Using,
since A + B + C = π
And,
Using , sin2A = 2sinAcosA
And,
= R.H.S
If A + B + C = π, prove that
= cosA + cosB + cosC
Using ,
since A + B + C = π
And,
Using , cos2A = 1 – 2sin2A
= R.H.S
If A + B + C = π, prove that
= sin2A + sin2B + sin2C
Using,
Sin2A = 2sinAcosA
= 2sinAcosA + 2sin(B+C)cos(B - C)
since A + B + C = π
= 2sinAcosA + 2sin(π - A)cos(B - C )
= 2sinAcosA + 2sinAcos(B - C)
= 2sinA{cosA + cos (B-C)}
( but cos A = cos { 180 - ( B + C ) } = - cos ( B + C )
And now using
= 2sinA{2sinBsinC}
= 4sinAsinBsinC
Now,
= sinA + sinB + sinC
Using,
Therefore,
= R.H.S
If A + B + C = π, prove that
sin (B + C – A) + sin (C + A – B) – sin (A + B – C) = 4cos A cos B sin C
= sin (B + C – A) + sin (C + A – B) – sin (A + B – C)
Using,
= 2sinC cos(B-A) – sin(A+B-C)
since A + B + C = π
= 2sinCcos(B-A) – sin(π – C – C)
= 2sinCcos(B-A) – sin2C
Since , sin2A = 2sinAcosA,
= 2sinCcos(B-A) – 2sinCcosC
= 2sinC{cos(B-A) – cosC}
Using ,
= 4cosAcosBsinC
= R.H.S
If A + B + C = π, prove that
Taking L.C.M
Multiplying and divide the above equation by 2, we get
Since , sin2A = 2sinAcosA
NOW,
= sin2A + sin2B + sin2C
= 2sinAcosA + 2sin(B+C)cos(B - C)
since A + B + C = π
= 2sinAcosA + 2sin(π - A)cos(B - C )
= 2sinAcosA + 2sinAcos(B - C)
= 2sinA{cosA + cos (B-C)}
( but cos A = cos { 180 - ( B + C ) } = - cos ( B + C )
And now using
= 2sinA{2sinBsinC}
= 4sinAsinBsinC
Putting the above value in the equation, we get
= 2
= R.H.S
If A + B + C = π, prove that
cos2 A + cos2 B + cos2 C = 1 – 2cos A cos B cos C
= cos2 A + cos2 B + cos2 C
Using formula ,
Using ,
Using , since A + B + C = π
And, cos(π – A ) = -cosA
Using cos2A = 2cos2A -1
= 1 + cos2A – cosAcos(B-C)
= 1 + cosA{cosA - cos(B-C)}
Using ,
Since , A + B + C = π
= 1 - 2cosAcosCcosC
= R.H.S
If A + B + C = π, prove that
sin2 A – sin2 B + sin2 C = 2sin A cos B sin C
= sin2 A – sin2 B + sin2 C
Using formula ,
Using ,
since A + B + C = π
And sin(π – A) = sinA
Using , cos2A = 1 – 2sin2A
= 2sinAcosBsinC
= R.H.S
If A + B + C = π, prove that
Using formula ,
Using ,
Using , since A + B + C = π
And, cos(π – A ) = -cosA
Using , cos2A = 1 – 2sin2A
since A + B + C = π
and Using ,
Using , since A + B + C = π
= R.H.S
If A + B + C = π, prove that
tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
= tan 2A + tan 2B + tan 2C
Since A + B + C = π
A + B = π – C
2A + 2B = 2π – 2C
Tan (2A+2B) = tan (2π – 2C)
Since tan (2π – C) = -tan C
Tan (2A + 2B) = -tan 2C
Now using formula,
Tan 2A + tan 2B = -tan 2C + tan 2C tan 2B tan 2A
Tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
= R.H.S