If sinA = 4/5 And cosB = 5/13, where 0 <A, B < π/2, find the values of the following:
(i) sin(A +B)
(ii) cos(A +B)
(iii) sin(A –B)
(iv) cos(A -B)
Given sinA = 4/5 And cosB = 5/13
We know that where 0 <A,B < π/2
Then,
(i) Sin(A +B)
We know that sin(A +B) = sinA cosB + cosA sinB
(ii) Cos(A +B)
We know that cos(A +B) = cosA cosB-sinA sinB
(iii) Sin(A –B)
We know that sin(A -B) = sinA cosB - cosA sinB
(iv) Cos(A –B)
We know that cos(A -B) = cosA cosB+sinA sinB
If SinA = 12/13 And sinB = 4/5, where π/2<A < π And 0 <B < π/2, find the following:
(i) sin(A +B) (ii) cos(A +B)
Given sinA = 12/13 And sinB = 4/5 where π/2 <A < π And 0 <B < π/2
We know that
(i) Sin(A +B)
We know that sin(A +B) = sinA cosB + cosA sinB
(ii) Cos(A +B)
We know that cos(A +B) = cosA cosB-sinA sinB
If sinA = 3/5, cosB = –12/13, where A And B Both lie in second quadrant, find the value of sin(A +B).
Given sinA = 3/5 And cosB = -12/13
A And B lie in the second quadrant.
So sine function is positive And cosine function is negative.
We know that
Now consider sin(A +B),
⇒ sin(A +B)
If cosA = – 24/25 And cosB = 3/5, where π <A < 3π/2 And 3π/2 <B < 2π, find the following:
(i) sin(A +B) (ii) cos(A +B)
Given cosA = -24/25 And cosB = 3/5 where π <A < 3π/2 And 3π/2 <B < 2π
A is in third quadrant And B is in fourth quadrant.
Here, sine function is negative.
We know that
Then,
(i) Sin(A +B)
We know that sin(A +B) = sinA cosB + cosA sinB
(ii) Cos(A +B)
We know that cos(A +B) = cosA cosB-sinA sinB
If tanA = 3/4, cosB = 9/41, where π<A < 3π/2 And 0 <B < π/2, find tan(A +B).
Given tanA = 3/4 And cosB = 9/41 where π <A < 3π/2 And 0 <B < π/2
A is in third quadrant And B is in first quadrant.
Tan function And sine function are positive.
We know that
We know that
We know that
If sinA = 1/2, cosB = 12/13, where π/2<A < π And 3π/2 <B < 2π, find tan(A -B).
Given sinA = 1/2 And cosB = 12/13 where π/2 <A < π And 3π/2 <B < 2π
A is in second quadrant And B is in fourth quadrant.
In the second quadrant, the sine function is positive And cosine And tan functions negative.
In the fourth quadrant, sine And tan functions are negative, And cosine function are positive.
We know that
We know that
If SinA = 1/2, cosB = , where π/2<A < π And 0 <B < π/2, find the following:
(i) tan(A +B)(ii) tan(A -B)
Given sinA = 1/2 And cosB = √3/2 where π/2 <A < π And 0 <B < π/2,
A is in second quadrant And B is in first quadrant.
In the second quadrant, the sine function is positive And cosine And tan functions are negative.
In first quadrant, All functions are positive.
We know that
Then,
(i) tan(A +B)
We know that
= 0
(ii) tan(A –B)
We know that
Evaluate the following:
(i) sin 780 cos 180 – cos 780 sin 180 (ii) cos 470 cos 130 - sin 470 sin 130
(iii) sin 360 cos 90 + cos 360 sin 90 (iv) cos 800 cos 200 + sin 800 sin 200
(i) Given sin 780 cos 180 – cos 780 sin 180
We know that sin(A -B) = sinA cosB - cosA sinB
⇒ sin 780 cos 180 – cos 780 sin 180 = sin(78 – 18) °
= sin 60°
(ii) Given cos 470 cos 130 - sin 470 sin 130
We know that cosA cosB – sinA sinB = cos(A +B)
⇒ cos 470 cos 130 - sin 470 sin 130 = cos(47 + 13) °
= cos 60°
= 1/2
∴ cos 470 cos 130 - sin 470 sin 130 = 1/2
(iii) Given sin 360 cos 90 + cos 360 sin 90
We know that sin(A +B) = sinA cosB + cosA sinB
⇒ sin 360 cos 90 + cos 360 sin 90 = sin(36 + 9) °
= sin 45°
(iv) Given cos 800 cos 200 + sin 800 sin 200
We know that cosA cosB + sinA sinB = cos(A -B)
⇒ cos 800 cos 200 + sin 800 sin 200 = cos(80 - 20) °
= cos 60°
= 1/2
∴ cos 800 cos 200 + sin 800 sin 200 = 1/2
If cosA = –12/13 and cotB = 24/7, where A lies in the second quadrant and B in the third quadrant, find the values of the following:
(i) sin(A +B) (ii) cos(A +B) (iii) tan(A +B)
Given cosA = -12/13 And cotB = 24/7
A lies in second quadrant And B in the third quadrant.
The sine function is positive in the second quadrant and in the third quadrant,Both sine And cosine functions are negative.
We know that
Now,
(i) Sin(A +B)
We know that sin(A +B) = sinA cosB + cosA sinB
(ii) Cos(A +B)
We know that cos(A +B) = cosA cosB-sinA sinB
(iii) Tan(A +B)
We know that
Prove that: cos 7π/12 + cos π/12 = sin 5π/12 – sin π/12
⇒ 7π/12 = 105°, π/12 = 15°; 5π/12 = 75°
LHS = cos 105° + cos 15°
= cos(90° + 15°) + sin(90° - 75°)
= -sin 15° + sin 75°
= sin 75° - sin 15° = RHS
Hence proved.
Prove that:
LHS
We know that sin(A ±B) = sinA cosB ± cosA sinB
= RHS
Hence, proved.
Prove that:
(i) (ii)
(ii)
(i) LHS
Dividing numerator And denominator by cos 11°,
We know that
= tan 56° = RHS
Hence proved.
(ii) LHS
Dividing numerator And denominator by cos 9°,
We know that
= tan 54° = RHS
Hence proved.
(iii) LHS
Dividing numerator And denominator by cos 8°,
We know that
= tan 37° = RHS
Hence proved.
Prove that:
We know that sin(A +B) = sinA cosB + cosA sinB
= sin 90°
= 1 = RHS
Hence proved.
Prove that:
We know that sin(A -B) = sinA cosB - cosA sinB
= sin 60°
= RHS
Hence, proved.
Prove that:
We know that sin(A +B) = sinA cosB + cosA sinB
= sin 90°
= 1 = RHS
Hence proved.
Prove that:
We know that
HereA = 69° And B = 66°
= tan 135°
= - tan 45°
= -1 = RHS
Hence proved.
If tanA = 5/6 And tanB = 1/11, prove thatA +B = π/4.
Given
We know that
= 1
⇒ tan(A +B) = tan π/4
∴A + B = π/4
Hence proved.
If tanA = m/m–1 And tanB = 1/2m – 1, then prove that A –B = π/4.
Given
We know that
= 1
⇒ tan(A –B) = tan π/4
∴A –B = π/4
Hence proved.
prove that:
cos2 π/4 - sin2
LHS
We know that cos2A – sin2B = cos(A +B) cos(A –B)
= RHS
Hence, proved.
prove that:
sin2(n + 1)A – sin2nA = sin(2n + 1)A sinA
We know that sin2A – sin2B = sin(A +B) sin(A –B)
HereA =(n + 1)A And B = nA
⇒ LHS: sin2(n + 1)A – sin2nA = sin((n + 1)A + nA) sin((n + 1)A – nA)
= sin(nA +A + nA) sin(nA +A – nA)
= sin(2nA +A) sin(A)
= sin(2n + 1)A sinA = RHS
Hence proved.
Prove that:
LHS
We know that sin(A ±B) = sinA cosB ± cosA sinB And cos(A ±B) = cosA cosB∓sinA sinB
= tanA = RHS
Hence proved.
Prove that:
LHS
We know that sin(A –B) = sinA cosB – cosA sinB
= tanA – tanB + tanB – tan C + tan C – tanA
= 0 = RHS
Hence proved.
Prove that:
LHS
We know that sin(A –B) = sinA cosB – cosA sinB
= cotB – cotA + cot C – cotB + cotA – cot C
= 0 = RHS
Hence proved.
Prove that:
sin2B = sin2A + sin2(A-B) – 2sinA cosB sin(A-B)
RHS = sin2A + sin2(A -B) – 2 sinA cosB sin(A -B)
= sin2A + sin(A -B) [sin(A –B) – 2 sinA cosB]
We know that sin(A –B) = sinA cosB – cosA sinB
= sin2A + sin(A -B) [sinA cosB – cosA sinB – 2 sinA cosB]
= sin2A + sin(A -B) [-sinA cosB – cosA sinB]
= sin2A - sin(A -B) [sinA cosB + cosA sinB]
We know that sin(A +B) = sinA cosB + cosA sinB
= sin2A – sin(A –B) sin(A +B)
= sin2A – sin2A + sin2B
= sin2B = LHS
Hence proved.
Prove that:
cos2A + cos2B – 2 cosA cosB cos(A +B) = sin2(A +B)
LHS = cos2A + cos2B – 2 cosA cosB cos(A +B)
= cos2A + 1 – sin2B - 2 cosA cosB cos(A +B)
= 1 + cos2A – sin2B - 2 cosA cosB cos(A +B)
We know that cos2A – sin2B = cos(A +B) cos(A –B)
= 1 + cos(A +B) cos(A –B) - 2 cosA cosB cos(A +B)
= 1 + cos(A +B) [cos(A –B) – 2 cosA cosB]
We know that cos(A -B) = cosA cosB + sinA sinB.
= 1 + cos(A +B) [cosA cosB + sinA sinB – 2 cosA cosB]
= 1 + cos(A +B) [-cosA cosB + sinA sinB]
= 1 - cos(A +B) [cosA cosB - sinA sinB]
We know that cos(A +B) = cosA cosB - sinA sinB.
= 1 – cos2(A +B)
= sin2(A +B) = RHS
Hence proved.
Prove that:
LHS
We know that
We know that (x + y)(x – y) = x2 – y2
Hence, proved.
Prove that:
tan 8x – tan6x – tan 2x = tan 8x
tan 6x tan 2x
We have 8x = 6x + 2x
⇒ tan 8x = tan(6x + 2x)
We know that
⇒ tan8x (1 – tan6x tan2x) = tan6x + tan2x
⇒ tan8x – tan8x tan 6x tan2x = tan6x + tan2x
∴ tan8x – tan6x – tan2x = tan8x tan6x tan2x
Hence, proved.
Prove that:
⇒ π/12 = 15° And π/6 = 30°
We have 15° + 30° = 45°
⇒ tan(15° + 30°) = tan 45°
We know that
⇒ tan15° + tan30° = 1 – tan15° tan30°
∴ tan15° + tan30° + tan15° tan30° = 1
Hence, proved.
Prove that:
tan 360 + tan 90 + tan 360 tan 90 = 1
We have 36° + 9° = 45°
⇒ tan(36° + 9°) = tan 45°
We know that
⇒ tan 36° + tan 9° = 1 – tan 36° tan 9°
∴ tan 36° + tan 9° + tan 36° tan 9° = 1
Hence proved.
Prove that:
tan13x – tan 9x – tan 4x = tan 13 x
Tan 9x tan 4x
We have 13x = 9x + 4x
⇒ tan 13x = tan(9x + 4x)
We know that
⇒ tan 13x(1 – tan 9x tan 4x) = tan 9x + tan 4x
⇒ tan 13x – tan 13x tan 9x tan 4x = tan 9x + tan 4x
∴ tan 13x – tan 9x – tan 4x = tan 13x tan 9x tan 4x
Hence proved.
Prove that:
LHS
⇒ tan3x = tan(2x + x) And tan x = tan(2x – x)
= tan3x tanx = RHS
Hence, proved.
If , show that .
Given
LHS
We know that sin(A ±B) = sinA cosB ± cosA sinB And cos(A ±B) = cosA cosB∓sinA sinB
= tanA = RHS
If tanA = tanB, prove that .
Given tanA = x tanB
LHS
We know that sin(A ±B) = sinA cosB ± cosA sinB
Dividing numerator And denominator by cosA cosB,
= RHS
Hence, proved.
If tan(A +B) = And tan(A -B) = y, find the values of tan 2A And tan 2B.
Given tan(A +B) = x And tan(A –B) = y
Consider tan 2A = tan(A +A)
= tan(A +B +A –B)
We know that
Consider tan 2B = tan(B +B)
= tan(B +A +B –A)
We know that tan(-θ) = - tan θ
If CosA + SinB = m And SinA + CosB = n, prove that 2 Sin(A +B) = m2 + n2 – 2.
Given cosA + sinB = m And sinA + cosB = n
RHS = m2 + n2 – 2
=(cosA + sinB)2 +(sinA + cosB)2 – 2
= cos2A + sin2B + 2 cosA sinB + sin2A + cos2B + 2 sinA cosB – 2
= 1 + 1 + 2(cosA sinB + sinA cosB) - 2
We know that sin(A -B) = sinA cosB - cosA sinB
= 2 sin(A +B)
= LHS
Hence, proved.
If tanA + tanB =A And CotA + CotB =B, prove that: cot(A +B) = 1/a – 1/b.
Given tanA + tanB =A And cotA + cotB =B
Consider cotA + cotB =B
Then,
RHS
We know that
= cot(A +B) = LHS
Hence, proved.
If lies in the first quadrant And cos x = 8/17, then prove that
Given x lies in the first quadrant i.e. 0 < x < π/2 And cos x = 8/17
We know that
LHS
= cos(30 + x) + cos(45 – x) + cos(120 – x)
We know that cos(A ±B) = cosA cosB∓sinA sinB
= cos 30° cos x – sin 30° sin x + cos 45° cos x + sin 45° sin x + cos 120° cos x + sin 120° sin x
= cos x(cos 30° + cos 45° + cos 120°) + sin x(-sin 30° + sin 45° + sin 120°)
= RHS
Hence, proved.
If then prove that .
Given
We know that
Hence, proved.
If sin(α + β) = 1 And sin(α – β) = 1/2, where , then find the values of tan(α + 2β) And tan(2α + β).
Given sin(α + β) = 1 And sin(α – β) = 1/2
⇒ α + β = 90° …(1) And α - β = 30° …(2)
Adding(1) And(2),
⇒ 2α = 120°
∴ α = 60°
Subtracting(2) from(1),
⇒ 2β = 60°
∴ β = 30°
Then,
∴ tan(α + 2β) = tan(60° + 2 × 30°) = tan 120° = -√3
And tan(2α + β) = tan(2 × 60° + 30°) = tan 150° = -(1/√3)
If α,β are two different values of x lying between 0 And 2π which satisfy the equation 6 cos x + 8 sin x = 9, find the value of Sin(α+β).
Given 6 cos x + 8 sin x = 9
Case 1:
⇒ 6 cos x = 9 – 8 sin x
Squaring on both sides,
⇒ 36 cos2 x =(9 – 8 sin x)2
We know that cos2 x = 1 – sin2 x.
⇒ 36(1 – sin2 x) = 81 + 64 sin2 x – 144 sin x
⇒ 100 sin2 x – 144 sin x + 45 = 0
∴ cos α And cos β are the roots of the a bove equation
⇒ sin α sin β = 45/100
Case 2:
⇒ 8 sin x = 9 – 6 cos x
Squaring on both sides,
⇒ 64 sin2 x =(9 – 6 cos x)2
We know that sin2 x = 1 – cos2 x
⇒ 64(1 – cos2 x) = 81 + 36 cos2 x – 108 cos x
⇒ 100 cos2 x – 108 cos x + 17 = 0
∴ sin α And sin β are the roots of theAbove equation
⇒ cos α cos β = 17/100
Consider cos(α + β),
We know that cos(A +B) = cosA cosB-sinA sinB
We know that
If sin α + sin β =A And cos α + cos β =B, show that
(i)
(ii)
Given sin α + sin β =A And cos α + cos β =B.
⇒A2 +B2 =(sin α + sin β)2 +(cos α + cos β)2
= sin2 α + sin2 β + 2 sin α sin β + cos2 α + cos2 β + 2 cos α cos β
= sin2 α + cos2 α + sin2 β + cos2 β + 2(sin α sin β + cos α cos β)
We know that cos(A -B) = cosA cosB+sinA sinB
∴A2 +B2 = 2 + 2 cos(α – β) …(1)
Then,
⇒B2 –A2 =(cos α + cos β)2 –(sin α + sin β)2
= cos2 α + cos2 β + 2 cos α cos β –(sin2 α + sin2 β + 2 sin α sin β)
=(cos2 α – sin2 β) +(cos2 β – sin2 α) – 2cos(α + β)
= 2 cos(α + β) cos(α – β) + 2 cos(α + β)
= cos(α + β)(2 + 2 cos(α – β)) …(2)
From(1) And(2),
⇒B2 –A2 = cos(α + β)(A2 +B2)
…(ii)
And
…(i)
Prove that:
RHS
We know that sin(A -B) = sinA cosB - cosA sinB
= LHS
Hence, proved.
Prove that:
RHS
We know that cos(A +B) = cosA cosB-sinA sinB
= LHS
Hence, proved.
Prove that:
RHS
We know that sin(A -B) = sinA cosB - cosA sinB
= LHS
Hence, proved.
If sin α sin β - cos α cos β + 1 = 0, prove that 1 + cot α tan β = 0.
Given sin α sin β – cos α cos β + 1 = 0
⇒ -(cos α cos β – sin α sin β) + 1 = 0
We know that cos(A +B) = cosA cosB-sinA sinB
⇒ -cos(α + β) + 1 = 0
⇒ cos(α + β) = 1
We know that sin θ = √(1 – cos2 θ)
∴ sin(α + β) = 0 …(1)
Consider 1 + cot α tan β,
We know that sin(A ±B) = sinA cosB ± cosA sinB
= 0 = RHS
Hence, proved.
If tan α = x + 1, tanβ = x - 1, show that 2 cot(α - β) = x2.
Given tan α = x + 1 And tan β = x – 1
LHS = 2 cot(α – β)
We know that
= x2 = RHS
Hence, proved.
IfAngle θ is divided into two parts such that the tangents of the one part is λ times the tangent of other, And ϕ is their difference, then show that .
Let α And β be the two parts of angle θ.
Then, given θ = α + β And ϕ = α - β
Consider tan α = λ tan β
Applying componendo And dividendo,
We know that sin(A ±B) = sinA cosB ± cosA sinB
Hence, proved.
If , then show that sin α + cos α = cos x.
Given
Dividing numerator And denominator on RHSBy cos α,
We know that
Consider sin α + cos α,
We know that sin(A +B) = sinA cosB + cosA sinB And cos(A +B) = cosA cosB-sinA sinB
= √2 cos x
∴ sin α + cos α = √2 cos x
Hence proved.
If α And β are two solutions of the equation Atanx + Bsecx = c, then find the values of sin(α + β).
Given equation Atanx + Bsecx = c
⇒ c – Atanx = Bsecx
Squaring onBoth sides,
⇒(c – Atanx)2 = (Bsecx)2
⇒ c2 + A2tan2 x – 2actan x =B2sec2 x
⇒ c2 +A2 tan2 x – 2ac tan x = B2(1 + tan2 x)
⇒(a2 –B2) tan2 x – 2ac tan x +(c2 –B2) = 0
There are two solutions tan α And tan β in this quadratic.
We know that
Find the maximum and minimum values of each of the following trigonometrical expressions:
(i) 12 sin x- 5 cos x
(ii) 12 cos x + 5 sin x+ 4
(iii)
(iv) sin x – cos x + 1
We know that the maximum value of Acosα + Bsinα + c is
c + √(A2 +B2)
And the minimum value is c - √(a2 +B2).
(i) Given f(x) = 12 sin x – 5 cos x
Here A = -5,B = 12 and c = 0
⇒ -13 ≤ 12 sin x - 5 cos x ≤ 13
Hence, the maximum and minimum values of f(x) are 13 and -13 respectively.
(ii) Given f(x) = 12 cos x + 5 sin x + 4
Here A = 12,B = 5 and c = 4
⇒ -9 ≤ 12 cos x + 5 sin x + 4 ≤ 17
Hence, the maximum And minimum values of f(x) are 17 And -9 respectively.
(iii) Given
We know that sin(A -B) = sinA cosB - cosA sinB
Here
⇒ -3 ≤ ≤ 11
Hence, the maximum And minimum values of f(x) are 11 And -3 respectively.
(iv) Given f(x) = sin x – cos x + 1
Here A = -1,B = 1 And c = 1
Hence, the maximum And minimum values of f(x) are And respectively.
Reduce each of the following expressions to the Sine And Cosine of A single expression:
Let f(x) = √3 sin x – cos x
Dividing and multiplying by √(3 + 1) = 2,
Sine of expression:
We know that sinA cosB – cosA sinB = sin(A –B)
Cosine of the expression:
We know that cosA cosB – sinA sinB = cos(A +B)
Reduce each of the following expressions to the Sine And Cosine ofA single expression:
cos x – sin x
Let f(x) = cos x – sin x
Dividing and multiplying by √(1 + 1) = √2,
Sine of expression:
We know that sinA cosB – cosA sinB = sin(A –B)
Cosine of the expression:
We know that cosA cosB – sinA sinB = cos(A +B)
Reduce each of the following expressions to the Sine And Cosine ofA single expression:
24 cos x + 7 sin x
Let f(x) = 24 cos x + 7 sin x
Dividing and multiplying by √(242 + 72) = √625 = 25,
Sine of expression:
where sin α = 24/25 And cos α = 7/25
We know that sinA cosB + cosA sinB = sin(A +B)
Cosine of the expression:
We know that cosA cosB + sinA sinB = cos(A -B)
Show that Sin 1000 – Sin 100 is positive.
Let f(x) = sin 100° – sin 10°
Dividing And multiplyingBy √(1 + 1) = √2,
We know that cosA cosB – sinA sinB = cos(A +B)
∴ f(x) = √2 cos 55°
Prove that lies between and .
Let f(x) =(2√3 + 3) sin x + 2√3 cos x
HereA = 2√3 , B = 2√3 + 3 And c = 0
Hence proved.
If α + β - γ = π, and sin2 α + sin2 β – sin2 γ = λ sin α sin β cos γ, then write the value of λ.
α + β = π + γ
Sin (α + β) =sin (π + γ)
Sin (α) cos (β) + sin (β) cos (α)=-sin(γ)
Take square both side
[sin(α)cos(β)+sin(β)cos(α)]2=sin2(γ)
sin2(α)cos2(β)+sin2(β)cos2(α)+2 Sin(α)cos(β)sin(β)cos(α)= sin2(γ)
sin 2(α)[1-sin2(β)]+sin2(β)[1-sin2(α)]+2 Sin(α)cos(β)sin(β)cos(α)= sin2(γ)
sin 2(α)-Sin2(α)sin2(β)+sin2(β)-sin2(β)sin2(α) -sin2(γ)=- 2Sin(α)cos(β)sin(β)cos(α)
sin 2(α)+sin2(β)-sin2(γ)=2Sin2(α)sin2(β)- 2Sin(α)cos(β)sin(β)cos(α)
sin 2(α)+sin2(β)-sin2(γ)=-2Sin(α)sin(β)[ cos(β) cos(α)- Sin(α)sin(β)]
sin 2(α)+sin2(β)-sin2(γ)=-2Sin(α)sin(β) cos(α+ β)
sin 2(α)+sin2(β)-sin2(γ)=2Sin(α)sin(β) sin(γ)
Write the maximum and minimum values of 3 cos x + 4 sin x + 5.
the maximum value of (a
So maximum value
=5
the minimum value of (a
minimum value= -5
Write the maximum values of 12 sin x – 9 sin2 x.
f(x)ϵ-(3[-1,1]-2)2+4
f(x)ϵ-([-3,3]-2)2+4
f(x)ϵ-([-5,1])2+4
f(x)ϵ-[0,25]+4
f(x)ϵ[-25,0]+4
f(x)ϵ[-21,4]
If 12 sin x – 9 sin2 x attains its maximum value at x = α, then write the value of sin α.
f(x)=12sin(x) - 9sin2(x)
f’(x)= 12cos(x)-18sin(x)cos(x)
f’(x)=0 for the maximum value of f(x)
12cos(x)-18sin(x)cos(x)=0
Write the interval in which the values of lie.
f(x)ϵ[-7,7]+3
f(x)ϵ[-4,10]
If tan (A + B) = p and tan (A – B) = q, then write the value of tan 2B.
If then write the value of tan x tan y.
use componendo and dividendo rule
If then write the value of ab + bc + ca.
a=k
b—2k
c=-2k
ab + bc + ca.=0
If A + B = C, then write the value of tan A tan B tan C.
A+B=C
tan A + tan B = tan C(1- tan A tan B)
tan C – tan A – tan B = tan A tan B tan C.
If sin α – sin β = a and cos α + cos β = b, then write the value of cos (α + β).
sin α – sin β = a
cos α + cos β = b
(sin α – sin β )2= a2 …..1
(cos α + cos β)2= b2 …….2
add both equations
value of
If and then write the value of α + β lying in the interval (0, π/2).
Assume x=0
=1
(α+β) = tan-1 1
Mark the correct alternative in the following:
The value of is
A. 1/2
B. √3/2
C. 1
D. 0
Mark the correct alternative in the following:
If A + B + C = π, then sec A (cos B cos C – sin B sin C) is equal to
A. 0
B. -1
C. 1
D. None of these
B+C=
TAKE BOTH SIDE COS
Cos (B+C)=cos(π-A)
(cos B cos C – sin B sin C) = -cos(A)
sec A (cos B cos C – sin B sin C) is equal to =-1
Mark the correct alternative in the following:
tan 20o + tan 40o + √3 tan 20o tan 40o is equal to
A.
B.
C.
D. 1
tan 20o + tan 40o + √3 tan 20o tan 40o
tan 60o (1- tan 20o tan 40o)+ √3 tan 20o tan 40o
Mark the correct alternative in the following:
If and then the value of A + B is
A. 0
B.
C.
D.
put a=0
tan(A)=0
tan(B)=1
A+B=
Mark the correct alternative in the following:
If 3 sin x + 4 cos x = 5, then 4 sin x – 3 cos x =
A. 0
B. 5
C. 1
D. None of these
3sin(x)+4cos(x)=5
cos(37°-x)=cos 0° (∵ x=37°)
4sin(x)-3cos(x)=k
Mark the correct alternative in the following:
If in a ∆ABC, tan A + tan B + tan C = 6, then cot A cot B cot C =
A. 6
B. 1
C. 1/6
D. None of these
A+B=π-C
Mark the correct alternative in the following:
tan 3A – tan 2A – tan A is equal to
A. tan 3 A tan 2 A tan A
B. - tan 3 A tan 2 A tan A
C. tan A tan 2 A – tan 2 A tan 3 A – tan 3 A tan A
D. None of these
tan(A)+tan(B)+tan(C)=tan(A) tan(B)tan(C)
tan 3A – tan 2A – tan A= tan 3 A tan 2 A tan A
Mark the correct alternative in the following:
If then is equal to
A. tan A tan B tan C
B. 0
C. 1
D. None of these
A+B=π-C
Mark the correct alternative in the following:
If and where P and Q both are acute angles. Then, the value of P – Q is
A.
B.
C.
D.
,
,
Cos(p-q)=cos(p)cos(q)+sin(p)sin(q)
Mark the correct alternative in the following:
If cot (α + β) = 0, then sin (α + 2 β) is equal to
A. sin α
B. cos 2 β
C. cos α
D. sin 2 α
cot (α + β) = 0
sin (α + 2 β)= sin (α +β) cos(β) + sin(β) cos (α +β)
put
sin (α + 2 β)= cos(β)
Mark the correct alternative in the following:
is equal to
A. tan 55o
B. cot 55o
C. - tan 35o
D. - cot 35o
= tan 55°
Mark the correct alternative in the following:
The value of is
A.
B. 0
C.
D.
cos2 A –sin2 B
=cos(A+B)cos(A-B)
Mark the correct alternative in the following:
If then
A.
B.
C.
D.
Mark the correct alternative in the following:
If sin (π cos x) = cos (π sin x), then sin 2x =
A.
B.
C.
D. None of these
sin(π cos x)=cos(π sin x)
Put n=0
,
,
Take square both side
,
,
Mark the correct alternative in the following:
If and then the value of θ + ϕ is
A.
B. π
C. 0
D.
Mark the correct alternative in the following:
The value of cos (36o – A) cos (36o + A) + cos (54o + A) cos (54o – A) is
A. sin 2 A
B. cos 2A
C. cos 3A
D. sin 3A
cos(54o + A) =sin(36o – A)
cos(54o - A) =sin(36o + A)
cos (36o–A) cos (36o+A)+ sin(36o-A)sin(36o+A)=cos(2A)
Mark the correct alternative in the following:
If tan (π/4 + x) + tan (π/4 – x) = a, then tan2 (π /4 + x) + tan2 (π /4 – x) =
A. a2 + 1
B. a2 + 2
C. a2 – 2
D. None of these
= a2 - 2
Mark the correct alternative in the following:
If then the smallest positive value of B is
A.
B.
C.
D.
Mark the correct alternative in the following:
If A – B = π /4, then (1 + tan A) (1 – tanB) is equal to
A. 2
B. 1
C. 0
D. 3
1+tan A tan B=tan A-tan B
tan A-tan B-tan A tan B=1
add both side 1
1+tan A-tan B-tan A tan B=1+1
(1+tan A)(1+tan B)=2
Case2:
put A=0 AND
(1+tan A )(1-tan A )=1× 2
Mark the correct alternative in the following:
The maximum value of is
A. 1/2
B. 3/2
C. 1/4
D. 3/4
1-
[ ]
Mark the correct alternative in the following:
If and tan A tan B = 2, then
A.
B.
C.
D.
Cos(A-B) =cos(A)cos(B)+sin(A)sin(B)
Mark the correct alternative in the following:
If tan 69o + tan 66o – tan 69o tan 66o = 2k, then k =
A. -1
B. 1/2
C. -1/2
D. None of these
-1+tan 69° tan66°=tan 69°+tan66°
tan 69°+tan66°-tan 69° tan66°=-1
2k=-1
Mark the correct alternative in the following:
If and then α + β is equal to
A.
B.
C.
D.
put x=1
tan(α+β)=1