Buy BOOKS at Discounted Price

Values Of Trigonometric Functions At Multiples And Submultiple Of An Angles

Class 11th Mathematics RD Sharma Solution
Exercise 9.1
  1. root 1-cos2x/1+cos2x = tanx Prove the following identities:
  2. sin2x/1-cos2x = cotx Prove the following identities:
  3. sin2x/1+cos2x = tanx Prove the following identities:
  4. root 2 + root 2+2cos4x = 2cosx, 0x pi /4 Prove the following identities:…
  5. 1-cos2x+sin2x/1+cos2x+sin2x = tanx Prove the following identities:…
  6. sinx+sin2x/1+cosx+cos2x = tanx Prove the following identities:
  7. cos2x/1+sin2x = tan (pi /4 - x) Prove the following identities:
  8. cosx/1-sinx = tan (pi /4 + x/2) Prove the following identities:
  9. cos^2 pi /8 + cos^2 3 pi /8 + cos^2 5 pi /8 + cos^2 7 pi /8 = 2 Prove the…
  10. sin^2 pi /8 + sin^2 3 pi /8 + sin^2 5 pi /8 + sin^2 7 pi /8 = 2 Prove the…
  11. (cos α + cos β)^2 + (sin α + sin β)^2 = 4 cos^2 (alpha - beta /2) Prove the…
  12. sin^2 (pi /8 + x/2) - sin^2 (pi /8 - x/2) = 1/root 2 sinx Prove the following…
  13. 1 + cos^2 2x = 2(cos^4 x + sin^4 x) Prove the following identities:…
  14. cos^3 2x + 3 cos 2x = 4(cos^6 x - sin^6 x) Prove the following identities:…
  15. (sin 3x + sin x) sin x + (cos 3x - cos x) cos x = 0 Prove the following…
  16. Prove the following identities: cos^2 (pi /4 - x) - sin^2 (pi /4 - x) = sin2x…
  17. cos 4x = 1 - 8 cos^2 x + 8 cos^4 x Prove the following identities:…
  18. sin 4x = 4 sin x cos^3 x - 4 cos x sin^3 x Prove the following identities:…
  19. 3(sin x - cos x)^4 +6(sin x + cos x)^2 +4(sin^6 x + cos^6 x) = 13 Prove the…
  20. 2(sin^6 x + cos^6 x) - 3(sin^4 x + cos^4 x)+ 1 =0 Prove the following…
  21. cos^6 x - sin^6 x = cos 2x (1 - 1/4 sin^22x) Prove the following identities:…
  22. tan (pi /4 + x) + tan (pi /4 - x) = 2sec2x Prove the following identities:…
  23. cot^2 x - tan^2 x = 4 cot 2x cosec 2x Prove the following identities:…
  24. cos 4x - cos 4α = 8(cos x - cos α) (cos x + cos α) (cos x - sin α) (cos x + sin…
  25. sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos 3x/2 Prove the following…
  26. Prove that: tan82 1^circle /2 = (root 3 + root 2) (root 2+1) = root 2 + root 3…
  27. Prove that: cot pi /8 = root 2+1
  28. If cosx = - 3/5 and x lies in the IIIrd quadrant, find the values of cos x/2 ,…
  29. If cosx = - 3/5 and x lies in the IInd quadrant, find the values of sin 2x and…
  30. If sinx = root 5/3 and x lies in IInd quadrant, find the values of cos x/2 ,…
  31. 0 ≤ x ≤ π and x lies in the IInd quadrant such that sinx = 1/4 Find the values…
  32. If cosx = 4/5 and x is acute, find tan 2x.
  33. If sinx = 4/5 and 0x pi /2 find the value of sin 4x.
  34. If tanx = b/a then find the value of root a+b/a-b + root a-b/a+b
  35. If tana = 1/7 and tanb = 1/3 show that cos 2A = sin 4B
  36. cos7^0cos14^circle cos28^circle cos56^circle = sin68^circle /16cos83^circle…
  37. cos 2 pi /15 cos 4 pi /15 cos 8 pi /15 cos 16 pi /15 = 1/16 Prove that:…
  38. cos pi /5 cos 2 pi /5 cos 4 pi /5 cos 8 pi /5 = -1/16 Prove that:…
  39. cos pi /65 cos 2 pi /65 cos 4 pi /65 cos 8 pi /65 cos 16 pi /65 cos 32 pi /65 =…
  40. If 2 tan α = 3 tan β, prove that tan (α - β) = sin2beta /5-cos2beta…
  41. sin (alpha + beta) = 2ab/a^2 + b^2 If sin α + sin β = a and cos α + cos β = b,…
  42. cos (alpha - beta) = a^2 + b^2 - 2/2 If sin α + sin β = a and cos α + cos β =…
  43. If 2tan alpha /2 = tan beta /2 prove that cosalpha = 3+5cosbeta /5+3cosbeta…
  44. If cosx = cosalpha +cosbeta /1+cosalpha cosbeta prove that tan x/2 = plus or…
  45. If sec (x + α) + sec(x - α) = 2 sec x, prove that cos x = plus or minus root 2…
  46. If cosalpha +cosbeta = 1/3 and sinalpha +sinbeta = 1/4 prove that cos alpha -…
  47. If sinalpha = 4/5 and cosbeta = 5/13 prove that cos alpha - beta /2 = 8/root 65…
  48. tanalpha +tanbeta = 2b/a+c If a cos 2x + b sin 2x = c has α and β as its…
  49. tanalp anbeta = c-a/c+a If a cos 2x + b sin 2x = c has α and β as its roots,…
  50. tan (alpha + beta) = b/a If a cos 2x + b sin 2x = c has α and β as its roots,…
  51. If cos α + cos β = 0 = sin α + sin β, then prove that cos 2α + cos 2β = - 2 cos…
Exercise 9.2
  1. sin 5x = 5 sin x - 20 sin^3 x + 16 sin^5 x Prove that:
  2. 4(cos^3 10o + sin^3 20o) = 3 (cos10o + sin20o) Prove that:
  3. cos^3xsin3x+sin^3xcos3x = 3/4 sin4x Prove that:
  4. tanxtan (x + pi /3) + tanxtan (pi /3 - x) + tan (x + pi /3) tan (x - pi /3) = -…
  5. tanx+tan (pi /3 + x) - tan (pi /3 - x) = 3tan3x Prove that:
  6. cotx+cot (pi /3 + x) - cot (pi /3 - x) = 3cot3x Prove that:
  7. cotx+cot (pi /3 + x) + cot (2 pi /3 + x) = 3cot3x Prove that:
  8. sin 5x = 5 cos^4 x sin x - 10 cos^2 x sin^3 x + sin^5 x Prove that:…
  9. sin^3x+sin^3 (2 pi /3 + x) + sin^3 (4 pi /3 + x) = - 3/4 sin3x Prove that:…
  10. | sinxsin (pi /3 - x) sin (pi /3 + x) | less than equal to 1/4 For all values…
  11. | cosxcos (pi /3 - x) cos (pi /3 + x) | less than equal to 1/4 for all values…
Exercise 9.3
  1. sin^2 2 pi /5 - sin^2 pi /3 = root 5-1/8 Prove that:
  2. sin^224^circle - sin^26^circle = root 5-1/8 Prove that:
  3. sin^242^circle - cos^278^circle = root 5+1/8 Prove that:
  4. cos78^circle cos42^circle cos36^circle = 1/8 Prove that:
  5. cos pi /15 cos 2 pi /15 cos 4 pi /15 cos 7 pi /15 = 1/16 Prove that:…
  6. cos6^circle cos42^circle cos66^circle cos78^circle = 1/16 Prove that:…
  7. sin6^circle sin42^circle sin66^circle sin78^circle = 1/16 Prove that:…
  8. cos36^circle cos42^circle cos60^circle cos78^circle = 1/16 Prove that:…
  9. sin pi /5 sin 2 pi /5 sin 3 pi /5 sin 4 pi /5 = 5/16 Prove that:
  10. cos pi /15 cos 2 pi /15 cos 3 pi /15 cos 4 pi /15 cos 5 pi /15 cos 6 pi /15 cos…
Very Short Answer
  1. If cos4x = 1+ksin^{2}xcos^{2}x then write the value of k.
  2. If tan {x}/{2} = frac {m}/{n} then write the value of m sin x + n cos x.…
  3. If { pi }/{2} then write the value of root { {1+cos2x}/{2} }…
  4. If { pi }/{2} then write the value of root { 2 + sqrt{2+2cos2x} } in the…
  5. If { pi }/{2} then write the value of root { {1-cos2x}/{1+cos2x} }…
  6. If pi then write the value of root { {1-cos2x}/{1+cos2x} }
  7. In a right-angled triangle ABC, write the value of sin2 A + sin2 B + sin2 C.…
  8. Write the value of cos2 76o + cos2 16o – cos 76o cos 16o.
  9. If { pi }/{4} then write the value of root {1-sin2x}
  10. Write the value of cos { pi }/{7} cos frac { 2 pi }/{7} cos frac { 4 pi }/{7}…
  11. If a = {1-cosb}/{sinb} then find the value of tan 2A.
  12. If sin x + cos x = a, find the value of sin6 x + cos6 x.
  13. If sin x + cos x = a, find the value of |sin x – cos x|
Mcq
  1. 8sin {x}/{8} cos frac {x}/{2} cos frac {x}/{4} cos frac {x}/{8} is equal to Mark the…
  2. {sec8a-1}/{sec4a-1} is equal to Mark the Correct alternative in the following:…
  3. The value of cos { pi }/{65} cos frac { 2 pi }/{65} cos frac { 4 pi }/{65} cos frac…
  4. If cos 2x + 2 cos x = 1 then, (2 – cos2 x) sin2 x is equal to Mark the Correct…
  5. For all real values of x, cot x – 2 cot 2x is equal to Mark the Correct alternative in…
  6. The value of 2tan { pi }/{10} + 3sec frac { pi }/{10} - 4cos frac { pi }/{10} is…
  7. If in a ∆ABC, tan A + tan B + tan C = 0, then cot A cot B cot C =- Mark the Correct…
  8. If cosx = {1}/{2} ( a + frac {1}/{a} ) and cos3x = lambda ( a^{3} + {1}/{ a^{3}…
  9. If 2 tan α = 3 tan β, then tan (α - β) = Mark the Correct alternative in the following:…
  10. If tanalpha = {1-cosbeta }/{sinbeta} then Mark the Correct alternative in the…
  11. If sin α + sin β = a and cos α – cos β = b, then tan { alpha - beta }/{2} = Mark…
  12. The value of ( cot {x}/{2} - tan frac {x}/{2} ) ^{2} (1-2tanxcot2x) is Mark…
  13. The value of tanxsin ( { pi }/{2} + x ) cos ( frac { pi }/{2} - x ) is Mark the…
  14. The value of sin^{2} ( { pi }/{18} ) + sin^{2} ( frac { pi }/{9} ) + sin^{2} (…
  15. If 5 sin α = 3 sin (α + 2 β) ≠ 0, then tan (α + β) is equal to Mark the Correct…
  16. The value of 2 cos x – cos 3x – cos 5x – 16 cos3 x sin2 x is Mark the Correct…
  17. If A = 2 sin2 x – cos 2x, then A lies in the interval Mark the Correct alternative in…
  18. The value of {cos3x}/{2cos2x-1} is equal to Mark the Correct alternative in the…
  19. If tan (/4 + x) + tan ( root {6} /4 – x) = λ sec 2x, then Mark the Correct alternative…
  20. The value of cos^{2} ( { pi }/{6} + x ) - sin^{2} ( frac { pi }/{6} - x ) is Mark…
  21. {sin3x}/{1+2cos2x} is equal to Mark the Correct alternative in the following:…
  22. The value of 2 sin2 B + 4 cos (A + B) sin A sin B + cos 2 (A + B) is Mark the Correct…
  23. The value of { 2 (sin2x+2cos^{2}x-1) }/{cosx-sinx-cos3x+sin3x} is Mark the Correct…
  24. 2(1 – 2 sin2 7x) sin 3x is equal to Mark the Correct alternative in the following:…
  25. If α and β are acute angles satisfying cos2alpha = {3cos2beta -1}/{3-cos2beta}…
  26. If tan {x}/{2} = root { frac {1-e}/{1+e} } tan frac { alpha }/{2} then cos α =…
  27. If (2n + 1) x = π, then 2n cos x cos 2x cos22 x ….. cos 2n – 1 x = Mark the Correct…
  28. If tan x = t then tan 2x + sec 2x is equal to Mark the Correct alternative in the…
  29. The value of cos4 x + sin4 x – 6 cos2 x sin2 x is Mark the Correct alternative in the…
  30. The value of cos (36o – A) cos (36o + A) + cos(54o – A) cos (54o + A) is Mark the…
  31. The value of tanxtan ( { pi }/{3} - x ) tan ( frac { pi }/{3} + x ) is Mark the…
  32. The value of is Mark the Correct alternative in the following:
  33. The value of is {sin5alpha -sin3alpha}/{cos5alpha+2cos4alpha+cos3alpha} Mark the…
  34. {sin5x}/{sinx} is equal to Mark the Correct alternative in the following:…
  35. If n = 1, 2, 3, …., then cos α cos 2 α cos 4 α … cos 2n – 1 α is equal to Mark the…
  36. If tanx = {a}/{b} then b cos 2x + a sin 2x is equal to Mark the Correct…
  37. If tanalpha = {1}/{7} , tanbeta = frac {1}/{3} then cos 2α is equal to Mark…
  38. The value of cos2 48o – sin2 12o is Mark the Correct alternative in the following:…

Exercise 9.1
Question 1.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


cos 2x = 1 – 2 sin2 x


= 2cos2 x – 1


Therefore,








= tan x


= RHS


Hence Proved



Question 2.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


cos 2x = 1 – 2 sin2 x


sin 2x = 2 sin x cos x


Therefore,







= cot x


= RHS


Hence Proved



Question 3.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


cos 2x = 2 cos2 x – 1


sin 2x = 2 sin x cos x


Therefore,







= tan x


= RHS


Hence Proved



Question 4.

Prove the following identities:



Answer:


Proof:


Take LHS:




{∵ cos 2x = 2 cos2 x – 1 ⇒ cos 4x = 2 cos2 2x -1}






{∵ cos 2x = 2 cos2 x – 1}




= 2 cos x


= RHS


Hence Proved



Question 5.

Prove the following identities:



Answer:


Proof:


Take LHS



Identities used:


cos 2x = 2 cos2 x – 1


= 1 – 2 sin2 x


sin 2x = 2 sin x cos x


Therefore,







= tan x



= RHS


Hence Proved



Question 6.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


cos 2x = cos2 x – sin2 x


sin 2x = 2 sin x cos x


Therefore,







= tan x



= RHS


Hence Proved



Question 7.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


cos 2x = cos2 x – sin2 x


sin 2x = 2 sin x cos x


Therefore,




{∵ a2 – b2 = (a - b)(a + b) & sin2 x + cos2 x = 1}



{∵ a2 + b2 + 2ab = (a + b)2}




Multiplying numerator and denominator by







{∵ sin (A – B) = sin A cos B – sin B cos A


cos (A – B) = cos A cos B + sin A sin B}




= RHS


Hence Proved



Question 8.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


cos 2x = cos2 x – sin2 x



sin 2x = 2 sin x cos x



Therefore,




{∵ a2 – b2 = (a - b)(a + b) & sin2 x + cos2 x = 1}



{∵ a2 + b2 + 2ab = (a + b)2}





Multiplying numerator and denominator by







{∵ sin (A – B) = sin A cos B – sin B cos A


cos (A – B) = cos A cos B + sin A sin B}




= RHS


Hence Proved



Question 9.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


cos 2x = 2 cos2 x – 1


⇒ 2 cos2 x = 1 + cos 2x



Therefore,






{∵ cos (π – θ) = - cos θ, cos (π + θ) = - cos θ & cos(2π – θ) = cos θ}




= 2


= RHS


Hence Proved



Question 10.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


cos 2x = 1 – 2 sin2 x


⇒ 2 sin2 x = 1 – cos 2x



Therefore,






{∵ cos (π – θ) = - cos θ,


cos (π + θ) = - cos θ &


cos(2π – θ) = cos θ}





= 2


= RHS


Hence Proved



Question 11.

Prove the following identities:

(cos α + cos β)2 + (sin α + sin β)2 = 4 cos2


Answer:


Proof:


Take LHS:







{∵ cos (A – B) = cos A cos B + sin A sin B}



{∵ cos2x = 2cos2 x – 1}




= RHS


Hence Proved



Question 12.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


sin2 A - sin2 B = sin (A + B) sin(A – B)


Therefore,






= RHS


Hence Proved



Question 13.

Prove the following identities:

1 + cos2 2x = 2(cos4 x + sin4 x)


Answer:


Proof:


Take LHS:




{∵ cos2x = cos2 x – sin2 x & cos2 x + sin2 x = 1}






= RHS



Question 14.

Prove the following identities:

cos3 2x + 3 cos 2x = 4(cos6 x – sin6 x)


Answer:


Proof:


Take RHS:






{∵ a3 – b3 = (a – b) (a2 + b2 + ab)}



{∵ cos 2x = cos2 x – sin2 x}




{∵ a2 + b2 + 2ab = (a + b)2}



{∵ cos2 x + sin2 x = 1}




{∵ sin 2x= 2 sin x cos x}



{∵ sin2 x = 1 – cos2 x}







= LHS


Hence Proved



Question 15.

Prove the following identities:

(sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0


Answer:

To prove: (sin 3x + sin x)sin x + (cos 3x – cos x)cos x= 0


Proof:


Take LHS:


(sin 3x + sin x)sin x + (cos 3x – cos x)cos x


= (sin 3x)(sin x) + sin2 x + (cos 3x)(cos x) – cos2 x


= [(sin 3x)(sin x) + (cos 3x)(cos x)] + (sin2 x – cos2 x)


= [(sin 3x)(sin x) + (cos 3x)(cos x)] – (cos2 x – sin2 x)


= cos(3x – x) – cos 2x


{∵ cos 2x = cos2 x – sin2 x &


cos A cos B + sin A sin B = cos(A – B)}


= cos 2x – cos 2x


= 0


= RHS


Hence Proved



Question 16.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:


cos2 A – sin2 A = cos 2A


Therefore,






= RHS


Hence Proved



Question 17.

Prove the following identities:

cos 4x = 1 – 8 cos2 x + 8 cos4 x


Answer:

To prove: cos 4x = 1 – 8 cos2 x + 8 cos4 x


Proof:


Take LHS:


cos 4x


Identities used:


cos 2x = = 2 cos2 x – 1


Therefore,


= 2 cos2 2x – 1


= 2(2 cos2 2x – 1)2 – 1


= 2{(2 cos2 2x}2 + 12 – 2×2 cos2 x} – 1


= 2(4 cos4 2x + 1 – 4 cos2 x) – 1


= 8 cos4 2x + 2 – 8 cos2 x – 1


= 8 cos4 2x + 1 – 8 cos2 x


= RHS


Hence Proved



Question 18.

Prove the following identities:

sin 4x = 4 sin x cos3 x – 4 cos x sin3 x


Answer:

To prove: sin 4x = 4 sin x cos3 x – 4 cos x sin3 x


Proof:


Take LHS:


sin 4x


Identities used:


sin 2x = 2 sin x cos x


cos 2x = cos2 x – sin2 x


Therefore,


= 2 sin 2x cos 2x


= 2 (2 sin x cos x) (cos2 x – sin2 x)


= 4 sin x cos x (cos2 x – sin2 x)


= 4 sin x cos3 x – 4 sin3 x cos x


= RHS


Hence Proved



Question 19.

Prove the following identities:

3(sin x – cos x)4+6(sin x + cos x)2+4(sin6 x + cos6 x) = 13


Answer:

To prove: 3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x) = 13


Proof:


Take LHS:


3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x)


Identities used:


(a + b)2 = a2 + b2 + 2ab


(a – b)2 = a2 + b2 – 2ab


a3 + b3 = (a + b) (a2 + b2 – ab)


Therefore,


= 3{(sin x – cos x)2}2 + 6 {(sin x)2 + (cos x)2 + 2 sin x cos x) + 4 {(sin2 x)3 + (cos2 x)3}


= 3{(sin x)2 + (cos x)2 – 2 sin x cos x)}2 + 6 (sin2 x + cos2 x + 2 sin x cos x) + 4{(sin2 x + cos2 x) (sin4 x + cos4 x – sin2 x cos2 x)}


= 3(1 – 2 sin x cos x) 2 + 6 (1 + 2 sin x cos x) + 4{(1) (sin4 x + cos4 x – sin2 x cos2 x)}


{∵ sin2 x + cos2 x = 1}


= 3{12 + (2 sin x cos x)2 – 4 sin x cos x}+ 6 (1 + 2 sin x cos x) + 4{(sin2 x)2 + (cos2 x)2 + 2 sin2 x cos2 x – 3 sin2 x cos2 x)}


= 3{1 + 4 sin2 x cos2 x – 4 sin x cos x}+ 6 (1 + 2 sin x cos x) + 4{(sin2 x + cos2 x)2 – 3 sin2 x cos2 x)}


= 3 + 12 sin2 x cos2 x – 12 sin x cos x + 6 + 12 sin x cos x + 4{(1)2 – 3 sin2 x cos2 x)}


= 9 + 12 sin2 x cos2 x + 4(1 – 3 sin2 x cos2 x)


= 9 + 12 sin2 x cos2 x + 4 – 12 sin2 x cos2 x


= 13


= RHS


Hence Proved



Question 20.

Prove the following identities:

2(sin6 x + cos6 x) – 3(sin4 x + cos4 x)+ 1 =0


Answer:

To prove: 2(sin6 x + cos6 x) – 3(sin4 x + cos4 x)+ 1 = 0


Proof:


Take LHS:


2(sin6 x + cos6 x) – 3(sin4 x + cos4 x)+ 1


Identities used:


(a + b)2 = a2 + b2 + 2ab


a3 + b3 = (a + b) (a2 + b2 – ab)


Therefore,


= 2{(sin2 x)3 + (cos2 x)3} – 3{(sin2 x)2 + (cos2 x)2} + 1


= 2{(sin2 x + cos2 x)(sin4 x + cos4 x – sin2 x cos2 x} – 3{(sin2 x)2 + (cos2 x)2 + 2sin2 x cos2 x – 2sin2 x cos2 x }+ 1


= 2{(1)(sin4 x + cos4 x + 2 sin2 x cos2 x – 3 sin2 x cos2 x}–3{(sin2 x + cos2 x)2 – 2sin2 x cos2 x} + 1


{∵ sin2 x + cos2 x = 1}


= 2{(sin2 x + cos2 x)2 – 3 sin2 x cos2 x} – 3{(1)2 – 2sin2 x cos2 x } + 1


= 2{(1)2 – 3 sin2 x cos2 x} – 3(1 – 2sin2 x cos2 x) + 1


= 2(1 – 3 sin2 x cos2 x) – 3 + 6 sin2 x cos2 x + 1


= 2 – 6 sin2 x cos2 x – 2 + 6 sin2 x cos2 x


= 0


= RHS


Hence Proved



Question 21.

Prove the following identities:

cos6 x – sin6 x = cos 2x


Answer:


Proof:


Take LHS:



Identities used:


(a + b)2 = a2 + b2 + 2ab


a3 – b3 = (a – b) (a2 + b2 + ab)


Therefore,




{∵ cos 2x = cos2 x – sin2 x}




{∵ sin2 x + cos2 x = 1}



{∵ sin 2x = 2 sin x cos x}




= RHS


Hence Proved



Question 22.

Prove the following identities:



Answer:


Proof:


Take LHS:



Identities used:




Therefore,






{∵ (a – b)(a + b) = a2 – b2;


(a + b)2 = a2 + b2 + 2ab &


(a – b)2 = a2 + b2 – 2ab}









{∵ cos2 x + sin2 x = 1 & cos 2x = cos2 x – sin2 x}




= 2 sec 2x



= RHS


Hence Proved



Question 23.

Prove the following identities:

cot2 x – tan2 x = 4 cot 2x cosec 2x


Answer:

To prove: cot2 x – tan2 x = 4 cot 2x cosec 2x


Proof:


Take LHS:


cot2 x – tan2 x


Identities used:


a2 – b2 = (a – b)(a + b)


Therefore,


= (cot x – tan x)(cot x + tan x)






{∵ cot2 x + 1 = cosec2 x}








{∵ sin 2x = 2 sin x cos x}


= 4 cot 2x cosec 2x



= RHS


Hence Proved



Question 24.

Prove the following identities:

cos 4x – cos 4α = 8(cos x – cos α) (cos x + cos α) (cos x – sin α) (cos x + sin α)


Answer:

To prove: cos 4x – cos 4α = 8(cos x – cos α) (cos x + cos α) (cos x – sin α) (cos x + sin α)


Proof:


Take LHS:


Cos 4x – cos 4α


{∵ cos 2θ = 2 cos2 θ – 1}


= 2 cos2 2x – 1 – (2 cos2 2α – 1)


= 2 cos2 2x – 1 – 2 cos2 2α + 1


= 2 cos2 2x – 2 cos2


= 2(cos2 2x – cos2 2α)


{∵ (a – b)(a + b) = a2 – b2}


= 2(cos 2x – cos 2α) (cos 2x + cos 2α)


{∵ cos 2θ = 2 cos2 θ – 1 = 1 – 2 sin2 θ}


= 2{2 cos2 x – 1 – (2 cos2 α – 1)}(2 cos2 x – 1 +1 – 2 sin2 α)


= 2{2 cos2 x – 1 – 2 cos2 α + 1}(2 cos2 x – 2 sin2 α)


= 2 × 2{2 cos2 x – 2 cos2 α}(cos2 x – sin2 α)


= 4 × 2{cos2 x – cos2 α}(cos2 x – sin2 α)


= 8(cos x – cos α)(cos x + cos α)(cos x – sin α)(cos x + sin α)


= RHS


Hence Proved



Question 25.

Prove the following identities:

sin 3x + sin 2x – sin x = 4 sin x cos


Answer:


Proof:


Take LHS:


sin 3x + sin 2x – sin x


Identities used:


sin 2x = 2 sin x cos x




Therefore,









= RHS


Hence Proved



Question 26.

Prove that:


Answer:



Proof:


Identities used:



Therefore,


tan 15° = tan (45° - 30°)







On rationalising:




{∵ (a – b)(a + b) = a2 – b2}








On rationalising




{∵ (a – b)(a + b) = a2 – b2}




Let 2θ = 15°



We know,






Formula used:





{∵ (a + b)2 = a2 + b2 + 2ab}




cot θ < 0 as θ is in 1st quadrant.


So,




{∵ (a + b)2 = a2 + b2 + 2ab}








{∵ cot θ = tan(90° - θ)}



Hence Proved



Question 27.

Prove that:


Answer:


Proof:


Take LHS:


Let 2θ = 45°


We know,




{∵ cot 45° = 1}





Formula used:







cot θ < 0 as θ is in 1st quadrant.


So,





Hence Proved



Question 28.

If and x lies in the IIIrd quadrant, find the values of and sin 2x.


Answer:

Given:




We know,


cos 2x = 2 cos2 x – 1









Since,




So,



We know,


cos 2x = 1 – 2 sin2 x









Since,




So,



We know,


sin2 x + cos2 x = 1


⇒ sin2 x = 1 – cos2 x








Since,




So,



Now,


sin 2x = 2(sin x)(cos x)







Question 29.

If and x lies in the IInd quadrant, find the values of sin 2x and


Answer:

Given:




We know,


cos 2x = 1 – 2 sin2 x









Since,




So,



We know,


sin2 x + cos2 x = 1


⇒ sin2 x = 1 – cos2 x








Since,



⇒sin x will be positive in second quadrant


So,



Now,


sin 2x = 2(sin x)(cos x)







Question 30.

If and x lies in IInd quadrant, find the values of and


Answer:

Given:




We know,


sin2 x + cos2 x = 1


⇒ cos2 x = 1 – sin2 x








Since,



⇒cosx will be negative in second quadrant


So,



We know,


cos 2x = 2 cos2 x – 1









Since,




So,



We know,


cos 2x = 1 – 2 sin2 x









Since,




So,



We know,







Question 31.

0 ≤ x ≤ π and x lies in the IInd quadrant such that Find the values of and


Answer:

Given:




We know,


sin2 x + cos2 x = 1


⇒ cos2 x = 1 – sin2 x








Since,



⇒cosx will be negative in second quadrant


So,



We know,


cos 2x = 2 cos2 x – 1









Since,




So,



We know,


cos 2x = 1 – 2 sin2 x









Since,




So,



We know,





On rationalising:




{∵ (a + b)(a – b) = a2 – b2}







Question 32.

If and x is acute, find tan 2x.


Answer:

Given:




We know,


sin2 x + cos2 x = 1


⇒ sin2 x = 1 – cos2 x








Since,



⇒sinx will be negative in first quadrant


So,



Now,





We know,









Hence, value of



Question 33.

If and find the value of sin 4x.


Answer:

Given:



To find: Values of sin4x


We know,


sin2 x + cos2 x = 1


⇒ cos2 x = 1 – sin2 x








Since,



⇒cosx will be negative in first quadrant


So,



We know,


sin 2x = 2 sin x cos x


cos 2x = 2 cos2 x – 1


Therefore,


sin 4x = 2 sin 2x cos 2x


⇒ sin 4x = 2 (2 sin x cos x) (2 cos2 x – 1)










Hence, value of



Question 34.

If then find the value of


Answer:




On taking LCM:





Dividing numerator and denominator by a:








{∵ (a + b)(a – b) = a2 – b2}




Question 35.

If and show that cos 2A = sin 4B


Answer:


To prove: cos 2A = sin 4B


We know,








Take LHS:


cos 2A










Now,


Take RHS:


sin 4B









Clearly, LHS = RHS


Hence Proved



Question 36.

Prove that:



Answer:


Proof:


Take LHS:



Multiplying and Dividing 24 sin 7°




{∵ sin 2x = 2 sin x cos x}









We know,


sin (180° - θ) = sin θ


sin (90° - θ) = cos θ


Now,




= RHS


Hence Proved



Question 37.

Prove that:



Answer:


Proof:


Take LHS:






{∵ sin 2x = 2 sin x cos x}











{∵ sin (2π + θ) = sin θ}




= RHS


Hence Proved



Question 38.

Prove that:



Answer:


Proof:


Take LHS:






{∵ sin 2x = 2 sin x cos x}











{∵ sin (3π + θ) = - sin θ}




= RHS


Hence Proved



Question 39.

Prove that:



Answer:


Proof:


Take LHS:






{∵ sin 2x = 2 sin x cos x}















{∵ sin (π - θ) = sin θ}




= RHS


Hence Proved



Question 40.

If 2 tan α = 3 tan β, prove that tan (α - β)


Answer:

Given: 2 tan α = 3 tan β



Proof:


Take LHS:


tan α – tan β














{∵ sin 2x = 2(sin x)(cos x)}



{∵ 2 cos2 x = 1 + cos 2x & 2 sin2 x = 1 – cos 2x}




= RHS


Hence Proved



Question 41.

If sin α + sin β = a and cos α + cos β = b, prove that



Answer:

Given: sin α + sin β = a & cos α + cos β = b



Proof:


sin α + sin β = a ………(3)


cos α + cos β = b ……(4)


Dividing equation 3 and 4:






We know,



Therefore,








Hence Proved



Question 42.

If sin α + sin β = a and cos α + cos β = b, prove that



Answer:

Given: sin α + sin β = a & cos α + cos β = b



Proof:


sin α + sin β = a


Squaring both sides, we get


(sin α + sin β)2 = a2


⇒ sin2 α + sin2 β + 2 sin α sin β = a2 ……(1)


cos α + cos β = b


Squaring both sides, we get


(cos α + cos β)2 = a2


⇒ cos2 α + cos2 β + 2 cos α cos β = b2 ………(2)


Adding equation 1 and 2, we get


sin2 α + sin2 β + 2 sin α sin β + cos2 α + cos2 β + 2 cos α cos β = a2 + b2


⇒ sin2 α + cos2 α + sin2 β + cos2 β + 2 sin α sin β + 2 cos α cos β = a2 + b2


⇒ 1 + 1 + 2 sin α sin β + 2 cos α cos β = a2 + b2


{∵ sin2 x + cos2 x = 1}


⇒ 2 + 2 sin α sin β + 2 cos α cos β = a2 + b2


⇒ 2(sin α sin β + cos α cos β) = a2 + b2 – 2



We know,


sin A sin B + cos A cos B = cos (A – B)


Therefore,



Hence Proved



Question 43.

If prove that


Answer:



Proof:


Take LHS:


cos α








Now, Take RHS:











= cos α


Hence Proved



Question 44.

If prove that


Answer:




We know,










Applying componendo and dividendo, we get






Taking reciprocal both sides:






Hence Proved



Question 45.

If sec (x + α) + sec(x - α) = 2 sec x, prove that cos x


Answer:

Given: sec (x + α) + sec(x - α) = 2 sec x



sec (x + α) + sec(x - α) = 2 sec x








{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}






{∵ cos 2x = 2 cos2 x – 1}




{∵ cos 2x = 2 cos2 x – 1}











Hence Proved



Question 46.

If and prove that


Answer:




Squaring both sides, we get





Squaring both sides, we get




Adding equation (1) and (2), we get





We know,


sin A sin B + cos A cos B = cos (A – B)


Therefore,














Hence Proved



Question 47.

If and prove that


Answer:



Proof:


We know,


sin2 α + cos2 α = 1


⇒ cos2 α = 1 – sin2 α







Similarly,


sin2 β + cos2 β = 1


⇒ sin2 β = 1 – cos2 β







Identity used:


cos (α – β) = cos α cos β + sin α sin β










Hence Proved



Question 48.

If a cos 2x + b sin 2x = c has α and β as its roots, then prove that



Answer:

Given: a cos 2x + b sin 2x = c



We know,




Therefore,


a cos 2x + b sin 2x = c









We know,


If m and n are roots of the equation ax2 + bx + c = 0


then,


Sum of the roots(m+n)


Therefore,


If tan α and tan β are the roots of the equation



then,





Hence Proved



Question 49.

If a cos 2x + b sin 2x = c has α and β as its roots, then prove that



Answer:

Given: a cos 2x + b sin 2x = c



We know,




Therefore,


a cos 2x + b sin 2x = c









We know,


If m and n are roots of the equation ax2 + bx + c = 0


then,


Product of the roots(mn)


Therefore,


If tan α and tan β are the roots of the equation



then,





Hence Proved



Question 50.

If a cos 2x + b sin 2x = c has α and β as its roots, then prove that



Answer:


We know,



Therefore,



From previous question:








Hence Proved



Question 51.

If cos α + cos β = 0 = sin α + sin β, then prove that cos 2α + cos 2β = - 2 cos (α + β).


Answer:



Proof:


cos α + cos β = 0


Squaring both sides:


⇒ (cos α + cos β)2 = (0)2


⇒ cos2 α + cos2 β + 2 cos α cos β = 0 ……(1)


sin α + sin β = 0


Squaring both sides:


⇒ (sin α + sin β)2 = (0)2


⇒ sin2 α + sin2 β + 2 sin α sin β = 0 ………(2)


Subtracting equation (1) from (2), we get


cos2 α + cos2 β + 2 cos α cos β – (sin2 α + sin2 β + 2 sin α sin β) = 0


⇒ cos2 α + cos2 β + 2 cos α cos β – sin2 α – sin2 β – 2 sin α sin β = 0


⇒ cos2 α – sin2 α + cos2 β – sin2 β + 2(cos α cos β – sin α sin β) = 0


{∵ cos2 x – sin2 x = 2x &


cos A cos B – sin A sin B = cos(A + B)}


⇒ cos 2α + cos 2β + 2 cos (α + β) = 0


⇒ cos 2α + cos 2β = - 2 cos (α + β)


Hence Proved




Exercise 9.2
Question 1.

Prove that:

sin 5x = 5 sin x – 20 sin3 x + 16 sin5 x


Answer:

LHS is


sin 5x = sin(3x+2x)


But we know,


sin(x+y) = sin x cos y+cos x sin y…..(i)


⇒ sin 5x = sin 3x cos 2x+cos 3x sin 2x


⇒ sin 5x = sin (2x+x) cos 2x+cos (2x+x) sin 2x……..(ii)


And


cos (x+y) = cos(x)cos(y) – sin(x)sin(y)……(iii)


Now substituting equation (i) and (iii) in equation (ii), we get


⇒ sin 5x = (sin 2x cos x+cos 2x sin x )cos 2x+( cos 2x cos x – sin 2x sin x) sin 2x


⇒ sin 5x = sin 2x cos 2x cos x+cos2 2x sin x+(sin 2x cos 2x cos x – sin2 2x sin x)


⇒ sin 5x = 2sin 2x cos 2x cos x+cos2 2x sin x– sin2 2x sin x …….(iv)


Now sin 2x = 2sin x cos x………(v)


And cos 2x = cos2x –sin2x………(vi)


Substituting equation (v) and (vi) in equation (iv), we get


⇒ sin 5x = 2(2sin x cos x)(cos2x –sin2x)cos x+(cos2x –sin2x)2sin x –(2sin x cos x)2sin x


⇒ sin 5x = 4(sin x cos2 x)([1–sin2x] –sin2x)+([1–sin2x]–sin2x)2sin x –(4sin2 x cos2 x)sin x (as cos2x+sin2x=1 ⇒ cos2x=1–sin2x)


⇒ sin 5x = 4(sin x [1–sin2x])(1–2sin2x)+(1–2sin2x)2sin x–4sin3 x [1–sin2x]


⇒ sin 5x = 4sin x(1–sin2x)(1–2sin2x)+(1–4sin2x+4sin4x)sin x–4sin3 x +4sin5x


⇒ sin 5x = (4sin x–4sin3x)( 1–2sin2x) +sin x–4sin3x+4sin5x–4sin3 x +4sin5x


⇒ sin 5x = 4sin x–8sin3x–4sin3x+8sin5x+sin x–8sin3x+8sin5x


⇒ sin 5x = 5sin x–20sin3x+16sin5x


Hence LHS = RHS


[Hence proved]



Question 2.

Prove that:

4(cos310o + sin320o) = 3 (cos10o + sin20o)


Answer:

We know that


⇒ sin (3× 20°)=cos (3× 10°)


⇒ 3sin 20°–4sin320°=4cos310°–3cos 10°


(as sin 3θ=3sin θ–4sin3 θ and cos 3θ =4cos3θ–3cosθ)


⇒ 4(cos310°+sin320°)=3(sin 20°+cos 10°)


LHS=RHS


Hence proved



Question 3.

Prove that:



Answer:

We know that,


cos 3θ =4cos3θ–3cosθ


⇒4 cos3θ=cos3θ+3cosθ



And similarly


sin 3θ=3sin θ–4sin3 θ


⇒4 sin3θ=3sinθ–sin 3θ



Now,



Substituting the values from equation (i) and (ii), we get






(as sin(x+y) = sin x cos y+cos x sin y)



RHS


Hence Proved



Question 4.

Prove that:



Answer:












≠ –3


Hence LHS≠ RHS



Question 5.

Prove that:



Answer:















Hence proved



Question 6.

Prove that:



Answer:
















Hence proved



Question 7.

Prove that:



Answer:


We know,


(as –cot θ=cot (180°–θ))


Hence the above LHS becomes

















Hence proved



Question 8.

Prove that:

sin 5x = 5 cos4x sin x – 10 cos2x sin3 x + sin5 x


Answer:

LHS is


sin 5x = sin(3x+2x)


But we know,


sin(x+y) = sin x cos y+cos x sin y…..(i)


⇒ sin 5x = sin 3x cos 2x+cos 3x sin 2x


⇒ sin 5x = sin (2x+x) cos 2x+cos (2x+x) sin 2x……..(ii)


And


cos (x+y) = cos(x)cos(y) – sin(x)sin(y)……(iii)


Now substituting equation (i) and (iii) in equation (ii), we get


⇒ sin 5x = (sin 2x cos x+cos 2x sin x )(cos 2x)+( cos 2x cos x – sin 2x sin x) (sin 2x)……..(iv)


Now sin 2x = 2sin x cos x………(v)


And cos 2x = cos2x –sin2x………(vi)


Substituting equation (v) and (vi) in equation (iv), we get


⇒ sin 5x =[(2 sin x cos x)cos x+(cos2x–sin2x)sin x]( cos2x–sin2x)+[( cos2x–sin2x)cos x – (2 sin x cos x) sin x)]( 2 sin x cos x)


⇒ sin 5x =[2 sin x cos2 x+sin xcos2x–sin3x]( cos2x–sin2x)+[cos3x–sin2xcos x – 2 sin2 x cos x]( 2 sin x cos x)


⇒ sin 5x =cos2x[3 sin x cos2 x –sin3x]–sin2x[3 sin x cos2 x–sin3x]+2 sin x cos4x–2 sin3 x cos2 x – 4 sin3 x cos2 x


⇒ sin 5x = 3 sin x cos4 x –sin3xcos2x– 3 sin3 x cos2 x–sin5x +2 sin x cos4x–2 sin3 x cos2 x – 4 sin3 x cos2 x


⇒ sin 5x = 5 sin x cos4 x –10sin3xcos2x +sin5x


Hence LHS = RHS


[Hence proved]



Question 9.

Prove that:



Answer:

sin 3θ=3sin θ–4sin3 θ


⇒4 sin3θ=3sinθ–sin 3θ



Now,



Substituting equation (i) in above LHS, we get



We know,


(as sin θ =sin (180°–θ))


Similarly,


(as –sin θ =sin (180°+θ))


Substituting the equation (iii) and (iv) in equation (ii), we get







We know,



Substituting this in the above equation, we get






Hence proved



Question 10.

Prove that:

For all values of x.


Answer:

We know


sin (A+B)sin (A–B)=sin2A–sin2B


So the above LHS becomes,







But 3sin x–4 sin3x=sin 3x



But |sin θ|≤ 1 for all values of x


Hence


Therefore For all values of x



Question 11.

Prove that:

for all values of x


Answer:

We know


cos (A+B)cos (A–B)=cos2A–sin2B


So the above LHS becomes,








But 4cos3x–3cos x=cos 3x



But |cos θ|≤ 1 for all values of x


Hence


Therefore For all values of x




Exercise 9.3
Question 1.

Prove that:



Answer:



But sin (90°–θ)=cos θ


Then the above equation becomes,



And


Hence the above equation becomes,







Hence proved



Question 2.

Prove that:



Answer:


But sin (A+B)sin(A–B)=sin2A–sin2B


Then the above equation becomes,




And


Hence the above equation becomes,




Hence proved



Question 3.

Prove that:



Answer:




But cos (A+B)cos(A–B)=cos2A–sin2B


Then the above equation becomes,




And


Hence the above equation becomes,




Hence proved



Question 4.

Prove that:



Answer:


Multiply and divide by 2, we get



But 2cos A cos B = cos(A+B)+cos(A–B)


Then the above equation becomes,





But cos(180°–θ)=–cos θ


So the above equation becomes,



And


Hence the above equation becomes,









Hence proved



Question 5.

Prove that:



Answer:


Multiply and divide by , we get



But 2sin A cos A = sin 2A


Then the above equation becomes,



Multiply and divide by 2, we get



But 2sin A cos A = sin 2A


Then the above equation becomes,



Multiply and divide by 2, we get



But 2sin A cos A = sin 2A


Then the above equation becomes,



Multiply and divide by 2, we get



But 2sin A cos B = sin (A+B) +sin(A–B), so the above equation becomes,







Hence proved



Question 6.

Prove that:



Answer:


By regrouping the LHS and multiplying and dividing by 4 we get,



But 2cos A cos B = cos (A+B) +cos (A–B)


Then the above equation becomes,





But cos(90°–θ)=sin θ and cos(180°–θ)=–cos(θ).


Then the above equation becomes,



Now,




Substituting the corresponding values, we get








Hence proved



Question 7.

Prove that:



Answer:


By regrouping the LHS and multiplying and dividing by 4 we get,



But 2sin A sin B = cos (A–B) –cos (A+B)


Then the above equation becomes,





But cos(90°–θ)=sin θ and cos(180°–θ)=–cos(θ).


Then the above equation becomes,



Now,




Substituting the corresponding values, we get








Hence proved



Question 8.

Prove that:



Answer:


By regrouping the LHS and multiplying and dividing by 2 we get,



But 2cos A cos B = cos (A+B) +cos (A–B)


Then the above equation becomes,





But cos(90°–θ)=sin θ and cos(180°–θ)=–cos(θ).


Then the above equation becomes,



Now,



Substituting the corresponding values, we get







Hence proved



Question 9.

Prove that:



Answer:


This can be rewritten as,



But so the above equation becomes,




This can be rewritten as,



But sin (90°–θ)=cos θ


Then the above equation becomes,



Now,



Hence the above equation becomes,








Hence proved



Question 10.

Prove that:



Answer:


Multiply and divide by , we get



But 2sin A cos A = sin 2A


Then the above equation becomes,



Multiply and divide by 2, we get



But 2sin A cos A = sin 2A


Then the above equation becomes,



Multiply and divide by 2, we get



But 2sin A cos A = sin 2A


Then the above equation becomes,



Multiply and divide by 2, we get



But 2sin A cos B = sin (A+B) +sin(A–B), so the above equation becomes,






Multiply and divide by , we get



But 2sin A cos A = sin 2A


Then the above equation becomes,



Multiply and divide by 2, we get



But 2sin A cos A = sin 2A


Then the above equation becomes,








Hence proved




Very Short Answer
Question 1.

If then write the value of k.


Answer:

Given equation is


cos 4x = 1 + k sin2x cos2x


Now consider the LHS of the equation,


cos 4x = 2cos2 2x – 1


[Formula for Cos 2x = 2cos2 x – 1]


= 2[2cos2 x - 1]2 – 1


= 2[(2cos2 x)2 – 2 × (2 cos2 x) × (1) + (1)2] – 1


[Applying (a-b)2 = a2 – 2ab + b2 formula]


= 2[4cos4 x – 4cos2 x +1] -1


= 8 cos4 x – 8cos2 x +2 – 1


= 8cos2 x (cos2 x – 1) + 1


= 8cos2 x (-sin2 x) +1


= - 8cos2 x sin2 x + 1


Now as per the LHS cos 4x = - 8cos2 x sin2 x + 1 -------- (1)


Comparing LHS with the RHS,


cos 4x = 1 - 8cos2 x sin2 x = 1 + k sin2x cos2x


by comparing we get k = -8



Question 2.

If then write the value of m sin x + n cos x.


Answer:

Given,



We need to find the value of m sin x + n cos x


Now consider


m sinx + n cos x


[ using the formulas sin 2x & cos 2x in terms of tan x


and ]



[Substituting ]








= n


Hence the value of m sin x + n cos x = n.



Question 3.

If then write the value of


Answer:

Given then the value of








Hence



But as given,


This states that, 90° < x < 270°, which means x lies between 2nd and 3rd quadrants.


In the 2nd and 3rd quadrants, the cosine function is negative, so the value of




Question 4.

If then write the value of in the simplest form.


Answer:

Given,


To find the value of



[using the formula cos 2x = 2cos2 x – 1]





[using the formula cos 2x = 2cos2 x –1, here 2x = θ so x = ]







As given, now by dividing the whole inequation with 2 we get, .


This clearly state that lies in the 1st quadrant and between 45° and 90°.


So



Question 5.

If then write the value of


Answer:

Given, for the value of


Consider,



[by using the formula cos 2x = cos2 x – sin2 x]




[by using the formula cos2 x + sin2 x = 1]





As already mentioned in the question, , x is in the 2nd quadrant, where tangent function is negative.


Therefore,



Question 6.

If then write the value of


Answer:

Given, for the value of


Consider,



[by using the formula cos 2x = cos2 x – sin2 x]




[by using the formula cos2 x + sin2 x = 1]





As already mentioned in the question, , x is in the 3rd quadrant, where tangent function is positive.


Therefore,



Question 7.

In a right-angled triangle ABC, write the value of sin2 A + sin2 B + sin2 C.


Answer:

Given, triangle ABC is right angle.


So, let ∠ B = 90°


Then as per the property of angles in a triangle


∠ A + ∠ B + ∠ C = 180°


As ∠ B = 90°


∠ A + 90° + ∠ C = 180°


Then ∠ A + ∠ C = 180° - 90° = 90°


Now, consider sin 2A + sin 2B + sin 2C


As ∠ B = 90°


sin2A + sin2B + sin2C = sin2A + sin2(90°) + sin2C


= sin2A + 1 + sin2C


From before, we know that ∠ A + ∠ C = 90° ; ∠ C = 90° - ∠ A


sin2A + sin2B + sin2C = sin2A + 1 + sin2( 90° - A)


= sin2A + cos2(A) + 1


[by using the identity cos x = sin ( 90° - x)]


sin2A + sin2B + sin2C = (sin2A + cos2A) + 1


= 1 + 1


= 2


[by using the identity sin2θ + cos2θ = 1]


Therefore, sin2A + sin2B + sin2C = 2.



Question 8.

Write the value of cos2 76o + cos2 16o – cos 76o cos 16o.


Answer:

Given to find the value for,


cos2 76o + cos2 16o – cos 76o cos 16o


In the above expression consider cos 76o cos 16o


[By using the trigonometric sum formula, we can say that,


cos(C+D) + cos ( C-D) = 2 cos C cos D]


Now multiply and divide this with 2, we get




Consider the full expression,





Multiplying and dividing the terms cos2 76° + cos2 16° with 2




[ by using the formula, cos 2θ = 2cos2θ – 1 � 2cos2θ = cos 2θ +1 ]



[ by using the formula, cos A + cos B ]







Hence, cos2 76o + cos2 16o – cos 76o cos 16o



Question 9.

If then write the value of


Answer:

Given,


We should find the value for



[by using the formulae, sin2θ + cos2θ = 1 and sin2θ = 2 sinθcosθ]





As already mentioned in the question, , so x lies in the 1st quadrant and both sine and cosine functions are positive.


Therefore, sin x + cos x



Question 10.

Write the value of


Answer:

Given expression is


[by using sin2θ = 2 sinθ cosθ � cos θ ]







Hence



Question 11.

If then find the value of tan 2A.


Answer:

Given,


To find the value for tan 2A,


Consider



[ by using the formula for ]



[by substituting the value of tan A as given in the problem]











= tan B


Therefore, tan 2A = tan B



Question 12.

If sin x + cos x = a, find the value of sin6 x + cos6 x.


Answer:

Given, sin x + cos x = a


We need to find the value of the expression,


sin6 x + cos6 x = (sin2 x)3 + (cos2 x)3


= (sin2 x + cos2 x)3 – 3 sin2 x cos2 x (sin2 x + cos2 x)


[ by using the formula a3 + b3 = (a+b)3 – 3ab(a+b)]


= (1)3 – 3 sin2 x cos2 x (1)


[ by using the formula sin2 x + cos2 x = 1]




[ by using the formula sin2 x + cos2 x = 1]






Hence sin6 x + cos6 x



Question 13.

If sin x + cos x = a, find the value of |sin x – cos x|


Answer:

Given, sin x + cos x = a


To find the value of |sin x – cos x|


Consider square of |sin x – cos x|


|sin x – cos x|2 = |sin x|2 + |cos x|2 – 2|sin x| |cos x|


[using the formula (a + b)2= a2 + b2 +2 ab]


|sin x – cos x|2 = |sin x|2 + |cos x|2 – 2|sin x| |cos x|


= (sin2 x + cos2 x)–[(sin x + cos x)2 –sin2 x –cos2 x]


= (sin2 x + cos2 x)–[a2 – (sin2 x + cos2 x) ]


[using the formula sin2 x + cos2 x = 1]


= 1 – a2 + 1


= 2 – a2


|sin x – cos x|2 = 2 – a2


Taking square root on both sides.



Hence




Mcq
Question 1.

Mark the Correct alternative in the following:

is equal to

A.8 cos x

B. cos x

C. 8 sin x

D. sin x


Answer:

Given expression,



[by rearranging terms]



[using the formula sin2θ = 2sinθcosθ]






= sin x


Hence


Question 2.

Mark the Correct alternative in the following:

is equal to

A.

B.

C.

D. None of these


Answer:

Given expression is



[using ]





[using cos2θ = 1 – 2 sin2θ ]




[using sin2θ = 2sinθcosθ ]





[using ]



Question 3.

Mark the Correct alternative in the following:

The value of is

A.

B.

C.

D. None of these


Answer:

Given expression,


Multiply and divide the expression with



[using the formula sin2θ =2 sin θ cos θ]



Multiply and divide the expression with 2



[using the formula sin2θ =2 sin θ cos θ]



Multiply and divide the expression with 2



[using the formula sin2θ =2 sin θ cos θ]



Multiply and divide the expression with 2



[using the formula sin2θ =2 sin θ cos θ]



Multiply and divide the expression with 2



[using the formula sin2θ =2 sin θ cos θ]



Multiply and divide the expression with 2







As


Hence answer is option D.


Question 4.

Mark the Correct alternative in the following:

If cos 2x + 2 cos x = 1 then, (2 – cos2 x) sin2 x is equal to

A.1

B. -1

C.

D.


Answer:

Given cos 2x + 2 cos x = 1, we need to find the expression,


(2 – cos2 x) sin2 x


Consider cos 2x + 2 cos x = 1


2cos2 x – 1 + 2 cos x -1 = 0


2cos2 x + 2cos x – 2 = 0


cos2 x + cos x = 1 -------- (1)


Now consider the expression


(2 – cos2 x) sin2 x = (2 – cos2 x)(1-cos2x)


= {2 – (1 – cos x)} { 1- ( 1 – cos x)}


[from equation (1) cos2 x = 1 - cos x]


= (1+ cos x) ( cos x)


= cos x + cos2 x


[from equation (1) cos2 x + cos x = 1]


= 1


Hence (2 – cos2 x) sin2 x = 1, so option A is the answer.


Question 5.

Mark the Correct alternative in the following:

For all real values of x, cot x – 2 cot 2x is equal to

A. tan 2x

B. tan x

C. - cot 3x

D. None of these


Answer:

Given expression is cot x – 2 cot 2x for all real values of x


Consider


[ using and ]




= tan x


Therefore cot x – 2 cot 2x = tan x.


Option B is the answer.


Question 6.

Mark the Correct alternative in the following:

The value of is

A.0

B.

C. 1

D. None of these


Answer:

Given expression is


Now




Multiplying and dividing the whole expression with




[using sin 2x = 2 sin x cos x formula]



[using cos 3x = 4cos3x – 3 cos x formula]




[using ]



= 0


Therefore


The answer is option A.


Question 7.

Mark the Correct alternative in the following:

If in a ∆ABC, tan A + tan B + tan C = 0, then cot A cot B cot C =-

A.6

B. 1

C.

D. None of these


Answer:

Given ABC is a triangle, so ∠ A + ∠ B + ∠ C = 180°


Now applying tan on both sides


tan (A+B +C) = tan (180°)


tan (A + B + C) = 0 ----- (1)


Also given tan A + tan B + tan C = 0 ------ (2)


As per the formula of tan (A+B+C)



Now,


[from equation (1) ]




[from equation (2) ]


By cross multiplying


-tan A tan B tan C = 0


tan A tan B tan C = 0


therefore


Hence cot A cot B cot C = 0


The answer is option D.


Question 8.

Mark the Correct alternative in the following:

If and then λ =

A.

B.

C. 1

D. None of these


Answer:

Given and


Consider the equation


Now take the LHS of the equation,


cos 3x = 4cos3 x – 3cos x


[using the formula for cos 3x = 4cos3 x – 3cos x]


From the question we know,


Substituting the known cos x values in the cos 3x expansion,









------ (1)


If we compare the RHS of the cos3x equation with the now derived equation (1) we get,



From the here we can clearly say that


Hence the answer is option B.


Question 9.

Mark the Correct alternative in the following:

If 2 tan α = 3 tan β, then tan (α - β) =

A.

B.

C.

D. None of these


Answer:

Given, 2 tan α = 3 tan β


From here we get, ------ (1)


Now consider tan (α - β),


The expansion of tan (α - β) is given by



As we already know the value of tan α from equation (1), we have,





[ by using ]








Multiplying and dividing the equation with 2



[using sin2θ = 2 sinθ cosθ]



In the denominator adding and subtracting 1




[using cos2θ = 2cos2θ – 1]



Hence, in the question the answer matches with option A.


Question 10.

Mark the Correct alternative in the following:

If then

A.tan 3 α = tan 2 β ok

B. tan 2 α = tan β

C. tan 2 α = tan α

D. None of these


Answer:

Given,


As there are 2 option in terms of tan 2A, let us consider tan 2A



[by using the formula for ]



[by substituting the value of tan A as given in the problem]











= tan B


Therefore, tan 2A = tan B


Hence the option B is the correct answer.


Question 11.

Mark the Correct alternative in the following:

If sin α + sin β = a and cos α – cos β = b, then

A.

B.

C.

D. None of these


Answer:

Given, sin α + sin β = a and cos α – cos β = b, then the value of



Consider sin α + sin β = a


As per the expansion of


Now , ----- (1)


Similarly, cos α - cos β = b


As per the expansion of


Now ------ (2)


By dividing equation (1) with (2) we get,





[As ]



Therefore the answer is option B.


Question 12.

Mark the Correct alternative in the following:

The value of is

A.1

B. 2

C. 3

D. 4


Answer:

Given to find the value of


We will solve the expression in two parts,


Now solving 1st term





If we multiply and divide the term by 2, we get,




[using the formula for and ]



----- (1)


Solving the 2nd term



[using the formula for ]


1 – 2 tan x cot 2x = 1 – ( 1 – tan2x)


= 1 – 1 + tan2x


1 – 2 tan x cot 2x = tan2 x ----- (2)


Now by combining (1) and (2) we get,




Hence the answer is option D.


Question 13.

Mark the Correct alternative in the following:

The value of is

A.1

B. -1

C.

D. None of these


Answer:

Given to find the value of the expression


(as sine is positive in 2nd quadrant)


(as cosine is positive in 1st quadrant)





There for


Hence the answer is option D.


Question 14.

Mark the Correct alternative in the following:

The value of is

A.1

B. 2

C. 4

D. None of these


Answer:

Given to find the value of


The angles can be modified as and




Using the identity , we have




[using the identity cos2θ + sin2θ = 1]


= 1 + 1 = 2



Hence the answer is option B.


Question 15.

Mark the Correct alternative in the following:

If 5 sin α = 3 sin (α + 2 β) ≠ 0, then tan (α + β) is equal to

A.2 tan β

B. 3 tan β

C. 4 tan β

D. 6 tan β


Answer:

Given 5 sin α = 3 sin (α + 2 β) ≠ 0, then the value of tan (α + β) is


Consider the given equation,


5 sin α = 3 sin (α + 2 β)



By applying componendo and dividendo


We get



[ using and sum of angles ]







This clearly shows, tan (α + β) = 4 tan β


Hence the answer is option C.


Question 16.

Mark the Correct alternative in the following:

The value of 2 cos x – cos 3x – cos 5x – 16 cos3 x sin2 x is

A.2

B. 1

C. 0

D. -1


Answer:

Given expression is 2 cos x – cos 3x – cos 5x – 16 cos3 x sin2 x


Consider the expression


2 cos x – cos 3x – cos 5x – 16 cos3 x sin2


= 2 cos x – (cos 5x + cos 3x) – 16 cos3 x sin2 x


[using the sum of angles ]



= 2 cos x – [2 cos 4x cos x] - 16cos3 x sin2 x


= 2 cos x (1 – cos 4x ) - 16cos3 x sin2 x


[ using the property cos 2θ = 1- 2 sin2 θ ]


= 2 cos x [ 1 – (1 – 2 sin2 2x)] -16cos3 x sin2 x


= 2 cos x [2 sin2 2x] -16cos3 x sin2 x


= 4cos x [2sin x cos x]2 -16cos3 x sin2 x


[ using sin 2θ = 2 sin θ cos θ ]


= 4 × 4 (cos x sin2 x cos2 x) -16cos3 x sin2 x


= 16cos3 x sin2 x -16cos3 x sin2 x


= 0


Hence cos x – cos 3x – cos 5x – 16 cos3 x sin2 x = 0


The answer is option C.


Question 17.

Mark the Correct alternative in the following:

If A = 2 sin2 x – cos 2x, then A lies in the interval

A.[-1, 3]

B. [1, 2]

C. [-2, 4]

D. None of these


Answer:

Given A = 2 sin2 x – cos 2x


[ using cos 2x = 1 – 2 sin2 x ]


so A = 2 sin2 x – cos 2x = 2 sin2 x –[ 1 – 2 sin2 x]


= 2 sin2 x -1 + 2 sin2 x]


= 4 sin2 x – 1


Now A = 2 sin2 x – cos 2x = 4 sin2 x – 1


As we know sin x lies between -1 and 1


-1 ≤ sin x ≤ 1


0 ≤ sin2x ≤ 1


Multiplying the inequality by 4


0 ≤ 4 sin2 x ≤ 4


Subtracting 1 from the inequality


-1 ≤ (4 sin2 x – 1) ≤ 3


From the above inequation, we can say that


A = (4 sin2 x – 1) belongs to the closed interval [-1,3]


Hence the answer is A.


Question 18.

Mark the Correct alternative in the following:

The value of is equal to

A.cos x

B. sin x

C. tan x

D. None of these


Answer:

Given expression is


Consider



[using the formulae cos 3x = 4 cos3 x – 3 cos x and


cos 2x = 2cos2x -1]




= cos x


Therefore


Hence the answer is option A.


Question 19.

Mark the Correct alternative in the following:

If tan (/4 + x) + tan (/4 – x) = λ sec 2x, then

A.3

B. 4

C. 1

D. 2


Answer:

Given equation is



Let us consider LHS



[ using the formulae and ]



[ the value of tan 45° = 1 ]







[using the formulae cos 2x = cos2 x – sin2 x and cos2 x + sin2 x = 1]



= 2 sec 2x


Now comparing with the LHS with RHS



From here we can clearly say that the answer is option D.


Question 20.

Mark the Correct alternative in the following:

The value of is

A.

B. 0

C.

D.


Answer:

Given expression is


[using the identity sin2 x + cos2 x = 1]




[using the formula a2 + b2 = (a + b)2 – 2ab]



[ using the sum of angle formula ]




[Using the identity cos (A+B) – cos (A-B) = -2sinAsinB ]





[multiplying and dividing the term cos2 x with 2]





[using the cos 2θ = 2cos2 θ – 1]




Hence the answer is option A.


Question 21.

Mark the Correct alternative in the following:

is equal to

A.cos x

B. sin x

C. - cos x

D. sin x


Answer:

Given expression



[Using the formulae sin3x = 3sinx – 4sin3x and cos2x = 1 – 2sin2x]




= sin x



Hence the answer is option B.


Question 22.

Mark the Correct alternative in the following:

The value of 2 sin2 B + 4 cos (A + B) sin A sin B + cos 2 (A + B) is

A.0

B. cos 3 A

C. cos 2A

D. None of these


Answer:

Given expression is


2 sin2 B + 4 cos (A + B) sin A sin B + cos 2 (A + B)


[ using the cos (A+B) = cos A cos B – sin A sin B]


= 2 sin2 B + 4 sin A sin B [cos A cos B - sin A sin B] + cos 2 (A + B)


= 2 sin2 B + 4 sin A sin B cos A cos B - 4 sin A sin B sin A sin B + cos 2 (A + B)


= 2 sin2 B + (2 sin A cos A) (2sin B cos B) - 4 sin2A sin2 B + cos 2 (A + B)


[ using sin 2A = 2 sin A cos A]


= 2 sin2 B + sin 2A sin 2B - 4 sin2A sin2 B + cos (2A + 2B)


=2 sin2 B ( 1 - 2 sin2A ) + sin 2A sin 2B + (cos2A cos2B - sin 2A sin 2B)


[ using cos (A+B) = cos A cos B – sin A sin B]


=2 sin2 B ( 1 - 2 sin2A )+ sin 2A sin 2B + cos2A cos2B - sin 2A sin 2B


[ using cos 2A = 1 – 2 sin2 x ]


= 2 sin2 B cos 2A + cos2A cos2B


= cos 2A ( 2sin2 B + cos 2B)


[ using cos 2A = cos2 x – sin2 x ]


= cos 2A ( 2 sin2 B + cos2 B – sin2 B)


= cos 2A ( sin2 B + cos2 B)


[using the identity sin2 x + cos2 x = 1]


= cos 2A (1)


= cos 2A


Hence


2 sin2 B + 4 cos (A + B) sin A sin B + cos 2 (A + B) = cos 2A


The answer is option C.


Question 23.

Mark the Correct alternative in the following:

The value of is

A.cos x

B. sec x

C. cosec x

D. sin x


Answer:

Given expression is



[ using cos 2A = cos2 x – sin2 x ]




[ using and ]






= cosec x


Therefore


Answer is option C.


Question 24.

Mark the Correct alternative in the following:

2(1 – 2 sin2 7x) sin 3x is equal to

A.sin 17x – sin 11x

B. sin 11x – sin 17x

C. cos 17x – cos 11x

D. cos 17x + cos 11x


Answer:

Given expression is 2(1 – 2 sin2 7x) sin 3x


2(1 – 2 sin2 7x) sin 3x = 2 cos 2(7x) sin 3x


[ using cos 2A = 1 – 2sin2A ]


= 2 cos 14x sin 3x


[using the sum of angles formula ]



= sin (17x) – sin (11x)


Therefore 2(1 – 2 sin2 7x) sin 3x = sin (17x) – sin (11x)


The answer is option A.


Question 25.

Mark the Correct alternative in the following:

If α and β are acute angles satisfying then tan α =

A.

B.

C.

D.


Answer:

Given for α < 90° and β < 90° ,


Then tan α is given by


Consider



[using componendo and dividend principle, if ]




[ using cos 2x = 1- 2sin2 x = 2cos2x – 1 ]



[ using cos 2x = cos2 x – sin2 x ]




[ using cos2 x + sin2 x = 1]




tan2 α = 2 tan2 β


applying square root on both sides




Hence the answer is option A.


Question 26.

Mark the Correct alternative in the following:

If then cos α =

A.1 – e cos (cos x + e)

B.

C.

D.


Answer:

Given , then cos α is


Let



By using the expansion of cos 2x in terms of tan x



We get,








Dividing the numerator and denominator by



[using the formula for cos 2x in terms of tan x ]



Hence the answer is option D.


Question 27.

Mark the Correct alternative in the following:

If (2n + 1) x = π, then 2n cos x cos 2x cos22 x ….. cos 2n – 1 x =

A.-1

B. 1

C. 1/2

D. None of these


Answer:

Given (2n – 1) x = π


Then evaluate the expression


2n cos x cos 2x cos22 x ….. cos 2n – 1 x


by taking a 2 from 2n and multiplying and dividing by sin x, we get



[by using the formula sin 2x = 2 sin x cos x]



Now borrowing another 2 from 2n-1




These iterations repeat till we reach the last term





As already given that


2n x + x = 180°


2n x = 180° - x


So substituting the same in the above solution



So the answer is option B.


Question 28.

Mark the Correct alternative in the following:

If tan x = t then tan 2x + sec 2x is equal to

A.

B.

C.

D.


Answer:

Given tan x = t


then tan 2x + sex 2x =


[ using the formulae for tan 2x and sec 2x in terms of tan x,


and ]


Now






As already given tan x = t



Hence the answer is option A.


Question 29.

Mark the Correct alternative in the following:

The value of cos4 x + sin4 x – 6 cos2 x sin2 x is

A.cos 2x

B. sin 2x

C. cos 4x

D. None of these


Answer:

Given expression is cos4 x + sin4 x – 6 cos2 x sin2 x


=[ (cos2x)2 + (sin2x)2 - 2 cos2x sin2x ] - 4 cos2x sin2x


[ using the formula a2 + b2 = (a+b)2 - 2ab]


= (cos2x - sin2x)2 - 4 cos2x sin2x


[ using the formula cos 2x = cos2 x – sin2 x ]


= (cos2x)2 – (2 sinx cosx )2


[ using the formula sin 2x = 2 sin x cos x ]


= (cos 2x)2 – (sin 2x)2


[ using the formula cos 2x = cos2 x – sin2 x ]


= cos 4x


Therefore cos4 x + sin4 x – 6 cos2 x sin2 x = cos 4x


The answer is option A.


Question 30.

Mark the Correct alternative in the following:

The value of cos (36o – A) cos (36o + A) + cos(54o – A) cos (54o + A) is

A.cos 2A

B. sin 2A

C. cos A

D. 0


Answer:

Given expression


cos (36o – A) cos (36o + A) + cos(54o – A) cos (54o + A)


In the above expression angle cos(54° + A) = sin[90° - (54° +A)]


And cos(54° - A) = sin[90° - (54° +A)]


[using cos θ = sin (90° - θ) ]


Now substituting the same in the expression


= cos (36o – A) cos (36o + A) + sin[90°-(54°–A)] sin[90°-(54° +A)]


= cos (36o – A) cos (36o + A) + sin (36o + A) sin (36o - A)


= cos (36o + A) cos (36o – A) + sin (36o + A) sin (36o - A)


[using cos (A-B) = cos A cos B + sin A sin B ]


= cos [(36° + A) – (36° - A)]


= cos ( 2A )


Therefore the answer is option A.


Question 31.

Mark the Correct alternative in the following:

The value of is

A.cot 3x

B. 2 cot 3x

C. tan 3x

D. 3 tan 3x


Answer:

Given expression is


[using and ]


Then





[ using a2 – b2 = (a-b)(a+b)]





[using formula ]


= tan 3x


Therefore


The answer is option C.


Question 32.

Mark the Correct alternative in the following:

The value of is

A.3 tan 3x

B. tan 3x

C. 3 cot 3x

D. cot 3x


Answer:

Given


[using ]


Then







[ using a2 – b2 = (a-b)(a+b)]







[using formula ]


= 3 tan 3x


Therefore


The answer is option A.


Question 33.

Mark the Correct alternative in the following:

The value of is

A.cot α/2

B. cot α

C. tan α/2

D. None of these


Answer:

Given



[Using


]






[ using and ]





=


Therefore


Answer is option C.


Question 34.

Mark the Correct alternative in the following:

is equal to

A.16 cos4 x – 12 cos2 x + 1

B. 16 cos4 x + 12 cos2 x + 1

C. 16 cos4 x – 12 cos2 x - 1

D. 16 cos4 x + 12 cos2 x - 1


Answer:

Given


Let 5x = 3x + 2x


Then



[using sin (A+B) = sin A cos B + cos A sin B]



[using the formulae :


sin 3x = 3sin x – 4 sin3x


cos 3x = 4 cos3x – 3 cos x


cos 2x = 2cos2x – 1


sin 2x = 2 sin x cos x ]





= (3 – 4 sin2x)(2cos2x -1) + (4 cos3x – 3cos x)(2cosx)


= (6cos2 x – 3 – 8 sin2 x cos2x + 4 sin2 x) + (8 cos4x - 6 cos2x)


[using sin2x + cos2 x = 1]


= – 3 – 8 (1 - cos2x) cos2x + 4 (1 - cos2x)+ 8cos4x


= – 3 – 8cos2x + 8cos4x + 4 - 4cos2x+8 cos4x


= 16 cos4x – 12 cos2x + 1


Therefore the answer is option A.


Question 35.

Mark the Correct alternative in the following:

If n = 1, 2, 3, …., then cos α cos 2 α cos 4 α … cos 2n – 1 α is equal to

A.

B.

C.

D.


Answer:

Given expression


cos α cos 2 α cos 4 α … cos 2n – 1 α


multiplying and dividing the expression by 2 sin α , we get,



[using sin 2x = 2 sin x cos x]



Now multiplying and dividing the expression with 2.




Continuing this process for n-1 times we will get



Now repeating for the last time,




This proves that



Hence the answer is option D.


Question 36.

Mark the Correct alternative in the following:

If then b cos 2x + a sin 2x is equal to

A.a

B. b

C.

D.


Answer:

Given


The value of the expression b cos 2x + a sin 2x


Now consider b cos 2x + a sin 2x


[ by using and ]



As already given


Then









= b


Hence b cos 2x + a sin 2x = b.


The answer is option B.


Question 37.

Mark the Correct alternative in the following:

If then cos 2α is equal to

A.sin 2β

B. sin 4β

C. sin 3β

D. cos 2β


Answer:

Given and


Now to find the value of cos 2α


[By using ]



[as is given]





Hence


The same value is obtained for sin 4β.


[By sin 2x = 2 sinx cosx]



[using and ]


We have



As





As the value of cos 2α and sin 4α are the same, the answer is option B.


Question 38.

Mark the Correct alternative in the following:

The value of cos2 48o – sin2 12o is

A.

B.

C. D.




Answer:

Given


cos2 48o – sin2 12o


[by using the formula cos 2x = 2cos2 x – 1 and cos2x = 1 – 2sin2x]






[by using the formula ]







Therefore


Hence the answer is option A.