Prove the following identities:
Proof:
Take LHS:
Identities used:
cos 2x = 1 – 2 sin2 x
= 2cos2 x – 1
Therefore,
= tan x
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
cos 2x = 1 – 2 sin2 x
sin 2x = 2 sin x cos x
Therefore,
= cot x
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
cos 2x = 2 cos2 x – 1
sin 2x = 2 sin x cos x
Therefore,
= tan x
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
{∵ cos 2x = 2 cos2 x – 1 ⇒ cos 4x = 2 cos2 2x -1}
{∵ cos 2x = 2 cos2 x – 1}
= 2 cos x
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS
Identities used:
cos 2x = 2 cos2 x – 1
= 1 – 2 sin2 x
sin 2x = 2 sin x cos x
Therefore,
= tan x
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
cos 2x = cos2 x – sin2 x
sin 2x = 2 sin x cos x
Therefore,
= tan x
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
cos 2x = cos2 x – sin2 x
sin 2x = 2 sin x cos x
Therefore,
{∵ a2 – b2 = (a - b)(a + b) & sin2 x + cos2 x = 1}
{∵ a2 + b2 + 2ab = (a + b)2}
Multiplying numerator and denominator by
{∵ sin (A – B) = sin A cos B – sin B cos A
cos (A – B) = cos A cos B + sin A sin B}
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
cos 2x = cos2 x – sin2 x
sin 2x = 2 sin x cos x
Therefore,
{∵ a2 – b2 = (a - b)(a + b) & sin2 x + cos2 x = 1}
{∵ a2 + b2 + 2ab = (a + b)2}
Multiplying numerator and denominator by
{∵ sin (A – B) = sin A cos B – sin B cos A
cos (A – B) = cos A cos B + sin A sin B}
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
cos 2x = 2 cos2 x – 1
⇒ 2 cos2 x = 1 + cos 2x
Therefore,
{∵ cos (π – θ) = - cos θ, cos (π + θ) = - cos θ & cos(2π – θ) = cos θ}
= 2
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
cos 2x = 1 – 2 sin2 x
⇒ 2 sin2 x = 1 – cos 2x
Therefore,
{∵ cos (π – θ) = - cos θ,
cos (π + θ) = - cos θ &
cos(2π – θ) = cos θ}
= 2
= RHS
Hence Proved
Prove the following identities:
(cos α + cos β)2 + (sin α + sin β)2 = 4 cos2
Proof:
Take LHS:
{∵ cos (A – B) = cos A cos B + sin A sin B}
{∵ cos2x = 2cos2 x – 1}
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
sin2 A - sin2 B = sin (A + B) sin(A – B)
Therefore,
= RHS
Hence Proved
Prove the following identities:
1 + cos2 2x = 2(cos4 x + sin4 x)
Proof:
Take LHS:
{∵ cos2x = cos2 x – sin2 x & cos2 x + sin2 x = 1}
= RHS
Prove the following identities:
cos3 2x + 3 cos 2x = 4(cos6 x – sin6 x)
Proof:
Take RHS:
{∵ a3 – b3 = (a – b) (a2 + b2 + ab)}
{∵ cos 2x = cos2 x – sin2 x}
{∵ a2 + b2 + 2ab = (a + b)2}
{∵ cos2 x + sin2 x = 1}
{∵ sin 2x= 2 sin x cos x}
{∵ sin2 x = 1 – cos2 x}
= LHS
Hence Proved
Prove the following identities:
(sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
To prove: (sin 3x + sin x)sin x + (cos 3x – cos x)cos x= 0
Proof:
Take LHS:
(sin 3x + sin x)sin x + (cos 3x – cos x)cos x
= (sin 3x)(sin x) + sin2 x + (cos 3x)(cos x) – cos2 x
= [(sin 3x)(sin x) + (cos 3x)(cos x)] + (sin2 x – cos2 x)
= [(sin 3x)(sin x) + (cos 3x)(cos x)] – (cos2 x – sin2 x)
= cos(3x – x) – cos 2x
{∵ cos 2x = cos2 x – sin2 x &
cos A cos B + sin A sin B = cos(A – B)}
= cos 2x – cos 2x
= 0
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
cos2 A – sin2 A = cos 2A
Therefore,
= RHS
Hence Proved
Prove the following identities:
cos 4x = 1 – 8 cos2 x + 8 cos4 x
To prove: cos 4x = 1 – 8 cos2 x + 8 cos4 x
Proof:
Take LHS:
cos 4x
Identities used:
cos 2x = = 2 cos2 x – 1
Therefore,
= 2 cos2 2x – 1
= 2(2 cos2 2x – 1)2 – 1
= 2{(2 cos2 2x}2 + 12 – 2×2 cos2 x} – 1
= 2(4 cos4 2x + 1 – 4 cos2 x) – 1
= 8 cos4 2x + 2 – 8 cos2 x – 1
= 8 cos4 2x + 1 – 8 cos2 x
= RHS
Hence Proved
Prove the following identities:
sin 4x = 4 sin x cos3 x – 4 cos x sin3 x
To prove: sin 4x = 4 sin x cos3 x – 4 cos x sin3 x
Proof:
Take LHS:
sin 4x
Identities used:
sin 2x = 2 sin x cos x
cos 2x = cos2 x – sin2 x
Therefore,
= 2 sin 2x cos 2x
= 2 (2 sin x cos x) (cos2 x – sin2 x)
= 4 sin x cos x (cos2 x – sin2 x)
= 4 sin x cos3 x – 4 sin3 x cos x
= RHS
Hence Proved
Prove the following identities:
3(sin x – cos x)4+6(sin x + cos x)2+4(sin6 x + cos6 x) = 13
To prove: 3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x) = 13
Proof:
Take LHS:
3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4 (sin6 x + cos6 x)
Identities used:
(a + b)2 = a2 + b2 + 2ab
(a – b)2 = a2 + b2 – 2ab
a3 + b3 = (a + b) (a2 + b2 – ab)
Therefore,
= 3{(sin x – cos x)2}2 + 6 {(sin x)2 + (cos x)2 + 2 sin x cos x) + 4 {(sin2 x)3 + (cos2 x)3}
= 3{(sin x)2 + (cos x)2 – 2 sin x cos x)}2 + 6 (sin2 x + cos2 x + 2 sin x cos x) + 4{(sin2 x + cos2 x) (sin4 x + cos4 x – sin2 x cos2 x)}
= 3(1 – 2 sin x cos x) 2 + 6 (1 + 2 sin x cos x) + 4{(1) (sin4 x + cos4 x – sin2 x cos2 x)}
{∵ sin2 x + cos2 x = 1}
= 3{12 + (2 sin x cos x)2 – 4 sin x cos x}+ 6 (1 + 2 sin x cos x) + 4{(sin2 x)2 + (cos2 x)2 + 2 sin2 x cos2 x – 3 sin2 x cos2 x)}
= 3{1 + 4 sin2 x cos2 x – 4 sin x cos x}+ 6 (1 + 2 sin x cos x) + 4{(sin2 x + cos2 x)2 – 3 sin2 x cos2 x)}
= 3 + 12 sin2 x cos2 x – 12 sin x cos x + 6 + 12 sin x cos x + 4{(1)2 – 3 sin2 x cos2 x)}
= 9 + 12 sin2 x cos2 x + 4(1 – 3 sin2 x cos2 x)
= 9 + 12 sin2 x cos2 x + 4 – 12 sin2 x cos2 x
= 13
= RHS
Hence Proved
Prove the following identities:
2(sin6 x + cos6 x) – 3(sin4 x + cos4 x)+ 1 =0
To prove: 2(sin6 x + cos6 x) – 3(sin4 x + cos4 x)+ 1 = 0
Proof:
Take LHS:
2(sin6 x + cos6 x) – 3(sin4 x + cos4 x)+ 1
Identities used:
(a + b)2 = a2 + b2 + 2ab
a3 + b3 = (a + b) (a2 + b2 – ab)
Therefore,
= 2{(sin2 x)3 + (cos2 x)3} – 3{(sin2 x)2 + (cos2 x)2} + 1
= 2{(sin2 x + cos2 x)(sin4 x + cos4 x – sin2 x cos2 x} – 3{(sin2 x)2 + (cos2 x)2 + 2sin2 x cos2 x – 2sin2 x cos2 x }+ 1
= 2{(1)(sin4 x + cos4 x + 2 sin2 x cos2 x – 3 sin2 x cos2 x}–3{(sin2 x + cos2 x)2 – 2sin2 x cos2 x} + 1
{∵ sin2 x + cos2 x = 1}
= 2{(sin2 x + cos2 x)2 – 3 sin2 x cos2 x} – 3{(1)2 – 2sin2 x cos2 x } + 1
= 2{(1)2 – 3 sin2 x cos2 x} – 3(1 – 2sin2 x cos2 x) + 1
= 2(1 – 3 sin2 x cos2 x) – 3 + 6 sin2 x cos2 x + 1
= 2 – 6 sin2 x cos2 x – 2 + 6 sin2 x cos2 x
= 0
= RHS
Hence Proved
Proof:
Take LHS:
Identities used:
(a + b)2 = a2 + b2 + 2ab
a3 – b3 = (a – b) (a2 + b2 + ab)
Therefore,
{∵ cos 2x = cos2 x – sin2 x}
{∵ sin2 x + cos2 x = 1}
{∵ sin 2x = 2 sin x cos x}
= RHS
Hence Proved
Prove the following identities:
Proof:
Take LHS:
Identities used:
Therefore,
{∵ (a – b)(a + b) = a2 – b2;
(a + b)2 = a2 + b2 + 2ab &
(a – b)2 = a2 + b2 – 2ab}
{∵ cos2 x + sin2 x = 1 & cos 2x = cos2 x – sin2 x}
= 2 sec 2x
= RHS
Hence Proved
Prove the following identities:
cot2 x – tan2 x = 4 cot 2x cosec 2x
To prove: cot2 x – tan2 x = 4 cot 2x cosec 2x
Proof:
Take LHS:
cot2 x – tan2 x
Identities used:
a2 – b2 = (a – b)(a + b)
Therefore,
= (cot x – tan x)(cot x + tan x)
{∵ cot2 x + 1 = cosec2 x}
{∵ sin 2x = 2 sin x cos x}
= 4 cot 2x cosec 2x
= RHS
Hence Proved
Prove the following identities:
cos 4x – cos 4α = 8(cos x – cos α) (cos x + cos α) (cos x – sin α) (cos x + sin α)
To prove: cos 4x – cos 4α = 8(cos x – cos α) (cos x + cos α) (cos x – sin α) (cos x + sin α)
Proof:
Take LHS:
Cos 4x – cos 4α
{∵ cos 2θ = 2 cos2 θ – 1}
= 2 cos2 2x – 1 – (2 cos2 2α – 1)
= 2 cos2 2x – 1 – 2 cos2 2α + 1
= 2 cos2 2x – 2 cos2 2α
= 2(cos2 2x – cos2 2α)
{∵ (a – b)(a + b) = a2 – b2}
= 2(cos 2x – cos 2α) (cos 2x + cos 2α)
{∵ cos 2θ = 2 cos2 θ – 1 = 1 – 2 sin2 θ}
= 2{2 cos2 x – 1 – (2 cos2 α – 1)}(2 cos2 x – 1 +1 – 2 sin2 α)
= 2{2 cos2 x – 1 – 2 cos2 α + 1}(2 cos2 x – 2 sin2 α)
= 2 × 2{2 cos2 x – 2 cos2 α}(cos2 x – sin2 α)
= 4 × 2{cos2 x – cos2 α}(cos2 x – sin2 α)
= 8(cos x – cos α)(cos x + cos α)(cos x – sin α)(cos x + sin α)
= RHS
Hence Proved
Prove the following identities:
sin 3x + sin 2x – sin x = 4 sin x cos
Proof:
Take LHS:
sin 3x + sin 2x – sin x
Identities used:
sin 2x = 2 sin x cos x
Therefore,
= RHS
Hence Proved
Prove that:
Proof:
Identities used:
Therefore,
tan 15° = tan (45° - 30°)
On rationalising:
{∵ (a – b)(a + b) = a2 – b2}
On rationalising
{∵ (a – b)(a + b) = a2 – b2}
Let 2θ = 15°
We know,
Formula used:
{∵ (a + b)2 = a2 + b2 + 2ab}
cot θ < 0 as θ is in 1st quadrant.
So,
{∵ (a + b)2 = a2 + b2 + 2ab}
{∵ cot θ = tan(90° - θ)}
Hence Proved
Prove that:
Proof:
Take LHS:
Let 2θ = 45°
We know,
{∵ cot 45° = 1}
Formula used:
cot θ < 0 as θ is in 1st quadrant.
So,
Hence Proved
If and x lies in the IIIrd quadrant, find the values of and sin 2x.
Given:
We know,
cos 2x = 2 cos2 x – 1
Since,
So,
We know,
cos 2x = 1 – 2 sin2 x
Since,
So,
We know,
sin2 x + cos2 x = 1
⇒ sin2 x = 1 – cos2 x
Since,
So,
Now,
sin 2x = 2(sin x)(cos x)
If and x lies in the IInd quadrant, find the values of sin 2x and
Given:
We know,
cos 2x = 1 – 2 sin2 x
Since,
So,
We know,
sin2 x + cos2 x = 1
⇒ sin2 x = 1 – cos2 x
Since,
⇒sin x will be positive in second quadrant
So,
Now,
sin 2x = 2(sin x)(cos x)
If and x lies in IInd quadrant, find the values of and
Given:
We know,
sin2 x + cos2 x = 1
⇒ cos2 x = 1 – sin2 x
Since,
⇒cosx will be negative in second quadrant
So,
We know,
cos 2x = 2 cos2 x – 1
Since,
So,
We know,
cos 2x = 1 – 2 sin2 x
Since,
So,
We know,
0 ≤ x ≤ π and x lies in the IInd quadrant such that Find the values of and
Given:
We know,
sin2 x + cos2 x = 1
⇒ cos2 x = 1 – sin2 x
Since,
⇒cosx will be negative in second quadrant
So,
We know,
cos 2x = 2 cos2 x – 1
Since,
So,
We know,
cos 2x = 1 – 2 sin2 x
Since,
So,
We know,
On rationalising:
{∵ (a + b)(a – b) = a2 – b2}
If and x is acute, find tan 2x.
Given:
We know,
sin2 x + cos2 x = 1
⇒ sin2 x = 1 – cos2 x
Since,
⇒sinx will be negative in first quadrant
So,
Now,
We know,
Hence, value of
If and find the value of sin 4x.
Given:
To find: Values of sin4x
We know,
sin2 x + cos2 x = 1
⇒ cos2 x = 1 – sin2 x
Since,
⇒cosx will be negative in first quadrant
So,
We know,
sin 2x = 2 sin x cos x
cos 2x = 2 cos2 x – 1
Therefore,
sin 4x = 2 sin 2x cos 2x
⇒ sin 4x = 2 (2 sin x cos x) (2 cos2 x – 1)
Hence, value of
If then find the value of
On taking LCM:
Dividing numerator and denominator by a:
{∵ (a + b)(a – b) = a2 – b2}
If and show that cos 2A = sin 4B
To prove: cos 2A = sin 4B
We know,
Take LHS:
cos 2A
Now,
Take RHS:
sin 4B
Clearly, LHS = RHS
Hence Proved
Prove that:
Proof:
Take LHS:
Multiplying and Dividing 24 sin 7°
{∵ sin 2x = 2 sin x cos x}
We know,
sin (180° - θ) = sin θ
sin (90° - θ) = cos θ
Now,
= RHS
Hence Proved
Prove that:
Proof:
Take LHS:
{∵ sin 2x = 2 sin x cos x}
{∵ sin (2π + θ) = sin θ}
= RHS
Hence Proved
Prove that:
Proof:
Take LHS:
{∵ sin 2x = 2 sin x cos x}
{∵ sin (3π + θ) = - sin θ}
= RHS
Hence Proved
Prove that:
Proof:
Take LHS:
{∵ sin 2x = 2 sin x cos x}
{∵ sin (π - θ) = sin θ}
= RHS
Hence Proved
If 2 tan α = 3 tan β, prove that tan (α - β)
Given: 2 tan α = 3 tan β
Proof:
Take LHS:
tan α – tan β
{∵ sin 2x = 2(sin x)(cos x)}
{∵ 2 cos2 x = 1 + cos 2x & 2 sin2 x = 1 – cos 2x}
= RHS
Hence Proved
If sin α + sin β = a and cos α + cos β = b, prove that
Given: sin α + sin β = a & cos α + cos β = b
Proof:
sin α + sin β = a ………(3)
cos α + cos β = b ……(4)
Dividing equation 3 and 4:
We know,
Therefore,
Hence Proved
If sin α + sin β = a and cos α + cos β = b, prove that
Given: sin α + sin β = a & cos α + cos β = b
Proof:
sin α + sin β = a
Squaring both sides, we get
(sin α + sin β)2 = a2
⇒ sin2 α + sin2 β + 2 sin α sin β = a2 ……(1)
cos α + cos β = b
Squaring both sides, we get
(cos α + cos β)2 = a2
⇒ cos2 α + cos2 β + 2 cos α cos β = b2 ………(2)
Adding equation 1 and 2, we get
sin2 α + sin2 β + 2 sin α sin β + cos2 α + cos2 β + 2 cos α cos β = a2 + b2
⇒ sin2 α + cos2 α + sin2 β + cos2 β + 2 sin α sin β + 2 cos α cos β = a2 + b2
⇒ 1 + 1 + 2 sin α sin β + 2 cos α cos β = a2 + b2
{∵ sin2 x + cos2 x = 1}
⇒ 2 + 2 sin α sin β + 2 cos α cos β = a2 + b2
⇒ 2(sin α sin β + cos α cos β) = a2 + b2 – 2
We know,
sin A sin B + cos A cos B = cos (A – B)
Therefore,
Hence Proved
If prove that
Proof:
Take LHS:
cos α
Now, Take RHS:
= cos α
Hence Proved
If prove that
We know,
Applying componendo and dividendo, we get
Taking reciprocal both sides:
Hence Proved
If sec (x + α) + sec(x - α) = 2 sec x, prove that cos x
Given: sec (x + α) + sec(x - α) = 2 sec x
sec (x + α) + sec(x - α) = 2 sec x
{∵ 2 cos A cos B = cos (A + B) + cos (A – B)}
{∵ cos 2x = 2 cos2 x – 1}
{∵ cos 2x = 2 cos2 x – 1}
Hence Proved
If and prove that
Squaring both sides, we get
Squaring both sides, we get
Adding equation (1) and (2), we get
We know,
sin A sin B + cos A cos B = cos (A – B)
Therefore,
Hence Proved
If and prove that
Proof:
We know,
sin2 α + cos2 α = 1
⇒ cos2 α = 1 – sin2 α
Similarly,
sin2 β + cos2 β = 1
⇒ sin2 β = 1 – cos2 β
Identity used:
cos (α – β) = cos α cos β + sin α sin β
Hence Proved
If a cos 2x + b sin 2x = c has α and β as its roots, then prove that
Given: a cos 2x + b sin 2x = c
We know,
Therefore,
a cos 2x + b sin 2x = c
We know,
If m and n are roots of the equation ax2 + bx + c = 0
then,
Sum of the roots(m+n)
Therefore,
If tan α and tan β are the roots of the equation
then,
Hence Proved
If a cos 2x + b sin 2x = c has α and β as its roots, then prove that
Given: a cos 2x + b sin 2x = c
We know,
Therefore,
a cos 2x + b sin 2x = c
We know,
If m and n are roots of the equation ax2 + bx + c = 0
then,
Product of the roots(mn)
Therefore,
If tan α and tan β are the roots of the equation
then,
Hence Proved
If a cos 2x + b sin 2x = c has α and β as its roots, then prove that
We know,
Therefore,
From previous question:
Hence Proved
If cos α + cos β = 0 = sin α + sin β, then prove that cos 2α + cos 2β = - 2 cos (α + β).
Proof:
cos α + cos β = 0
Squaring both sides:
⇒ (cos α + cos β)2 = (0)2
⇒ cos2 α + cos2 β + 2 cos α cos β = 0 ……(1)
sin α + sin β = 0
Squaring both sides:
⇒ (sin α + sin β)2 = (0)2
⇒ sin2 α + sin2 β + 2 sin α sin β = 0 ………(2)
Subtracting equation (1) from (2), we get
cos2 α + cos2 β + 2 cos α cos β – (sin2 α + sin2 β + 2 sin α sin β) = 0
⇒ cos2 α + cos2 β + 2 cos α cos β – sin2 α – sin2 β – 2 sin α sin β = 0
⇒ cos2 α – sin2 α + cos2 β – sin2 β + 2(cos α cos β – sin α sin β) = 0
{∵ cos2 x – sin2 x = 2x &
cos A cos B – sin A sin B = cos(A + B)}
⇒ cos 2α + cos 2β + 2 cos (α + β) = 0
⇒ cos 2α + cos 2β = - 2 cos (α + β)
Hence Proved
Prove that:
sin 5x = 5 sin x – 20 sin3 x + 16 sin5 x
LHS is
sin 5x = sin(3x+2x)
But we know,
sin(x+y) = sin x cos y+cos x sin y…..(i)
⇒ sin 5x = sin 3x cos 2x+cos 3x sin 2x
⇒ sin 5x = sin (2x+x) cos 2x+cos (2x+x) sin 2x……..(ii)
And
cos (x+y) = cos(x)cos(y) – sin(x)sin(y)……(iii)
Now substituting equation (i) and (iii) in equation (ii), we get
⇒ sin 5x = (sin 2x cos x+cos 2x sin x )cos 2x+( cos 2x cos x – sin 2x sin x) sin 2x
⇒ sin 5x = sin 2x cos 2x cos x+cos2 2x sin x+(sin 2x cos 2x cos x – sin2 2x sin x)
⇒ sin 5x = 2sin 2x cos 2x cos x+cos2 2x sin x– sin2 2x sin x …….(iv)
Now sin 2x = 2sin x cos x………(v)
And cos 2x = cos2x –sin2x………(vi)
Substituting equation (v) and (vi) in equation (iv), we get
⇒ sin 5x = 2(2sin x cos x)(cos2x –sin2x)cos x+(cos2x –sin2x)2sin x –(2sin x cos x)2sin x
⇒ sin 5x = 4(sin x cos2 x)([1–sin2x] –sin2x)+([1–sin2x]–sin2x)2sin x –(4sin2 x cos2 x)sin x (as cos2x+sin2x=1 ⇒ cos2x=1–sin2x)
⇒ sin 5x = 4(sin x [1–sin2x])(1–2sin2x)+(1–2sin2x)2sin x–4sin3 x [1–sin2x]
⇒ sin 5x = 4sin x(1–sin2x)(1–2sin2x)+(1–4sin2x+4sin4x)sin x–4sin3 x +4sin5x
⇒ sin 5x = (4sin x–4sin3x)( 1–2sin2x) +sin x–4sin3x+4sin5x–4sin3 x +4sin5x
⇒ sin 5x = 4sin x–8sin3x–4sin3x+8sin5x+sin x–8sin3x+8sin5x
⇒ sin 5x = 5sin x–20sin3x+16sin5x
Hence LHS = RHS
[Hence proved]
Prove that:
4(cos310o + sin320o) = 3 (cos10o + sin20o)
We know that
⇒ sin (3× 20°)=cos (3× 10°)
⇒ 3sin 20°–4sin320°=4cos310°–3cos 10°
(as sin 3θ=3sin θ–4sin3 θ and cos 3θ =4cos3θ–3cosθ)
⇒ 4(cos310°+sin320°)=3(sin 20°+cos 10°)
LHS=RHS
Hence proved
Prove that:
We know that,
cos 3θ =4cos3θ–3cosθ
⇒4 cos3θ=cos3θ+3cosθ
And similarly
sin 3θ=3sin θ–4sin3 θ
⇒4 sin3θ=3sinθ–sin 3θ
Now,
Substituting the values from equation (i) and (ii), we get
(as sin(x+y) = sin x cos y+cos x sin y)
RHS
Hence Proved
Prove that:
≠ –3
Hence LHS≠ RHS
Prove that:
Hence proved
Prove that:
Hence proved
Prove that:
We know,
(as –cot θ=cot (180°–θ))
Hence the above LHS becomes
Hence proved
Prove that:
sin 5x = 5 cos4x sin x – 10 cos2x sin3 x + sin5 x
LHS is
sin 5x = sin(3x+2x)
But we know,
sin(x+y) = sin x cos y+cos x sin y…..(i)
⇒ sin 5x = sin 3x cos 2x+cos 3x sin 2x
⇒ sin 5x = sin (2x+x) cos 2x+cos (2x+x) sin 2x……..(ii)
And
cos (x+y) = cos(x)cos(y) – sin(x)sin(y)……(iii)
Now substituting equation (i) and (iii) in equation (ii), we get
⇒ sin 5x = (sin 2x cos x+cos 2x sin x )(cos 2x)+( cos 2x cos x – sin 2x sin x) (sin 2x)……..(iv)
Now sin 2x = 2sin x cos x………(v)
And cos 2x = cos2x –sin2x………(vi)
Substituting equation (v) and (vi) in equation (iv), we get
⇒ sin 5x =[(2 sin x cos x)cos x+(cos2x–sin2x)sin x]( cos2x–sin2x)+[( cos2x–sin2x)cos x – (2 sin x cos x) sin x)]( 2 sin x cos x)
⇒ sin 5x =[2 sin x cos2 x+sin xcos2x–sin3x]( cos2x–sin2x)+[cos3x–sin2xcos x – 2 sin2 x cos x]( 2 sin x cos x)
⇒ sin 5x =cos2x[3 sin x cos2 x –sin3x]–sin2x[3 sin x cos2 x–sin3x]+2 sin x cos4x–2 sin3 x cos2 x – 4 sin3 x cos2 x
⇒ sin 5x = 3 sin x cos4 x –sin3xcos2x– 3 sin3 x cos2 x–sin5x +2 sin x cos4x–2 sin3 x cos2 x – 4 sin3 x cos2 x
⇒ sin 5x = 5 sin x cos4 x –10sin3xcos2x +sin5x
Hence LHS = RHS
[Hence proved]
Prove that:
sin 3θ=3sin θ–4sin3 θ
⇒4 sin3θ=3sinθ–sin 3θ
Now,
Substituting equation (i) in above LHS, we get
We know,
(as sin θ =sin (180°–θ))
Similarly,
(as –sin θ =sin (180°+θ))
Substituting the equation (iii) and (iv) in equation (ii), we get
We know,
Substituting this in the above equation, we get
Hence proved
Prove that:
For all values of x.
We know
sin (A+B)sin (A–B)=sin2A–sin2B
So the above LHS becomes,
But 3sin x–4 sin3x=sin 3x
But |sin θ|≤ 1 for all values of x
Hence
Therefore For all values of x
Prove that:
for all values of x
We know
cos (A+B)cos (A–B)=cos2A–sin2B
So the above LHS becomes,
But 4cos3x–3cos x=cos 3x
But |cos θ|≤ 1 for all values of x
Hence
Therefore For all values of x
But sin (90°–θ)=cos θ
Then the above equation becomes,
And
Hence the above equation becomes,
Hence proved
Prove that:
But sin (A+B)sin(A–B)=sin2A–sin2B
Then the above equation becomes,
And
Hence the above equation becomes,
Hence proved
Prove that:
But cos (A+B)cos(A–B)=cos2A–sin2B
Then the above equation becomes,
And
Hence the above equation becomes,
Hence proved
Prove that:
Multiply and divide by 2, we get
But 2cos A cos B = cos(A+B)+cos(A–B)
Then the above equation becomes,
But cos(180°–θ)=–cos θ
So the above equation becomes,
And
Hence the above equation becomes,
Hence proved
Prove that:
Multiply and divide by , we get
But 2sin A cos A = sin 2A
Then the above equation becomes,
Multiply and divide by 2, we get
But 2sin A cos A = sin 2A
Then the above equation becomes,
Multiply and divide by 2, we get
But 2sin A cos A = sin 2A
Then the above equation becomes,
Multiply and divide by 2, we get
But 2sin A cos B = sin (A+B) +sin(A–B), so the above equation becomes,
Hence proved
Prove that:
By regrouping the LHS and multiplying and dividing by 4 we get,
But 2cos A cos B = cos (A+B) +cos (A–B)
Then the above equation becomes,
But cos(90°–θ)=sin θ and cos(180°–θ)=–cos(θ).
Then the above equation becomes,
Now,
Substituting the corresponding values, we get
Hence proved
Prove that:
By regrouping the LHS and multiplying and dividing by 4 we get,
But 2sin A sin B = cos (A–B) –cos (A+B)
Then the above equation becomes,
But cos(90°–θ)=sin θ and cos(180°–θ)=–cos(θ).
Then the above equation becomes,
Now,
Substituting the corresponding values, we get
Hence proved
Prove that:
By regrouping the LHS and multiplying and dividing by 2 we get,
But 2cos A cos B = cos (A+B) +cos (A–B)
Then the above equation becomes,
But cos(90°–θ)=sin θ and cos(180°–θ)=–cos(θ).
Then the above equation becomes,
Now,
Substituting the corresponding values, we get
Hence proved
Prove that:
This can be rewritten as,
But so the above equation becomes,
This can be rewritten as,
But sin (90°–θ)=cos θ
Then the above equation becomes,
Now,
Hence the above equation becomes,
Hence proved
Prove that:
Multiply and divide by , we get
But 2sin A cos A = sin 2A
Then the above equation becomes,
Multiply and divide by 2, we get
But 2sin A cos A = sin 2A
Then the above equation becomes,
Multiply and divide by 2, we get
But 2sin A cos A = sin 2A
Then the above equation becomes,
Multiply and divide by 2, we get
But 2sin A cos B = sin (A+B) +sin(A–B), so the above equation becomes,
Multiply and divide by , we get
But 2sin A cos A = sin 2A
Then the above equation becomes,
Multiply and divide by 2, we get
But 2sin A cos A = sin 2A
Then the above equation becomes,
Hence proved
Given equation is
cos 4x = 1 + k sin2x cos2x
Now consider the LHS of the equation,
cos 4x = 2cos2 2x – 1
[Formula for Cos 2x = 2cos2 x – 1]
= 2[2cos2 x - 1]2 – 1
= 2[(2cos2 x)2 – 2 × (2 cos2 x) × (1) + (1)2] – 1
[Applying (a-b)2 = a2 – 2ab + b2 formula]
= 2[4cos4 x – 4cos2 x +1] -1
= 8 cos4 x – 8cos2 x +2 – 1
= 8cos2 x (cos2 x – 1) + 1
= 8cos2 x (-sin2 x) +1
= - 8cos2 x sin2 x + 1
Now as per the LHS cos 4x = - 8cos2 x sin2 x + 1 -------- (1)
Comparing LHS with the RHS,
cos 4x = 1 - 8cos2 x sin2 x = 1 + k sin2x cos2x
by comparing we get k = -8
If then write the value of m sin x + n cos x.
Given,
We need to find the value of m sin x + n cos x
Now consider
m sinx + n cos x
[ using the formulas sin 2x & cos 2x in terms of tan x
and ]
[Substituting ]
= n
Hence the value of m sin x + n cos x = n.
If then write the value of
Given then the value of
Hence
But as given,
This states that, 90° < x < 270°, which means x lies between 2nd and 3rd quadrants.
In the 2nd and 3rd quadrants, the cosine function is negative, so the value of
If then write the value of in the simplest form.
Given,
To find the value of
[using the formula cos 2x = 2cos2 x – 1]
[using the formula cos 2x = 2cos2 x –1, here 2x = θ so x = ]
As given, now by dividing the whole inequation with 2 we get, .
This clearly state that lies in the 1st quadrant and between 45° and 90°.
So
If then write the value of
Given, for the value of
Consider,
[by using the formula cos 2x = cos2 x – sin2 x]
[by using the formula cos2 x + sin2 x = 1]
As already mentioned in the question, , x is in the 2nd quadrant, where tangent function is negative.
Therefore,
If then write the value of
Given, for the value of
Consider,
[by using the formula cos 2x = cos2 x – sin2 x]
[by using the formula cos2 x + sin2 x = 1]
As already mentioned in the question, , x is in the 3rd quadrant, where tangent function is positive.
Therefore,
In a right-angled triangle ABC, write the value of sin2 A + sin2 B + sin2 C.
Given, triangle ABC is right angle.
So, let ∠ B = 90°
Then as per the property of angles in a triangle
∠ A + ∠ B + ∠ C = 180°
As ∠ B = 90°
∠ A + 90° + ∠ C = 180°
Then ∠ A + ∠ C = 180° - 90° = 90°
Now, consider sin 2A + sin 2B + sin 2C
As ∠ B = 90°
sin2A + sin2B + sin2C = sin2A + sin2(90°) + sin2C
= sin2A + 1 + sin2C
From before, we know that ∠ A + ∠ C = 90° ; ∠ C = 90° - ∠ A
sin2A + sin2B + sin2C = sin2A + 1 + sin2( 90° - A)
= sin2A + cos2(A) + 1
[by using the identity cos x = sin ( 90° - x)]
sin2A + sin2B + sin2C = (sin2A + cos2A) + 1
= 1 + 1
= 2
[by using the identity sin2θ + cos2θ = 1]
Therefore, sin2A + sin2B + sin2C = 2.
Write the value of cos2 76o + cos2 16o – cos 76o cos 16o.
Given to find the value for,
cos2 76o + cos2 16o – cos 76o cos 16o
In the above expression consider cos 76o cos 16o
[By using the trigonometric sum formula, we can say that,
cos(C+D) + cos ( C-D) = 2 cos C cos D]
Now multiply and divide this with 2, we get
Consider the full expression,
Multiplying and dividing the terms cos2 76° + cos2 16° with 2
[ by using the formula, cos 2θ = 2cos2θ – 1 � 2cos2θ = cos 2θ +1 ]
[ by using the formula, cos A + cos B ]
Hence, cos2 76o + cos2 16o – cos 76o cos 16o
If then write the value of
Given,
We should find the value for
[by using the formulae, sin2θ + cos2θ = 1 and sin2θ = 2 sinθcosθ]
As already mentioned in the question, , so x lies in the 1st quadrant and both sine and cosine functions are positive.
Therefore, sin x + cos x
Write the value of
Given expression is
[by using sin2θ = 2 sinθ cosθ � cos θ ]
Hence
If then find the value of tan 2A.
Given,
To find the value for tan 2A,
Consider
[ by using the formula for ]
[by substituting the value of tan A as given in the problem]
= tan B
Therefore, tan 2A = tan B
If sin x + cos x = a, find the value of sin6 x + cos6 x.
Given, sin x + cos x = a
We need to find the value of the expression,
sin6 x + cos6 x = (sin2 x)3 + (cos2 x)3
= (sin2 x + cos2 x)3 – 3 sin2 x cos2 x (sin2 x + cos2 x)
[ by using the formula a3 + b3 = (a+b)3 – 3ab(a+b)]
= (1)3 – 3 sin2 x cos2 x (1)
[ by using the formula sin2 x + cos2 x = 1]
[ by using the formula sin2 x + cos2 x = 1]
Hence sin6 x + cos6 x
If sin x + cos x = a, find the value of |sin x – cos x|
Given, sin x + cos x = a
To find the value of |sin x – cos x|
Consider square of |sin x – cos x|
|sin x – cos x|2 = |sin x|2 + |cos x|2 – 2|sin x| |cos x|
[using the formula (a + b)2= a2 + b2 +2 ab]
|sin x – cos x|2 = |sin x|2 + |cos x|2 – 2|sin x| |cos x|
= (sin2 x + cos2 x)–[(sin x + cos x)2 –sin2 x –cos2 x]
= (sin2 x + cos2 x)–[a2 – (sin2 x + cos2 x) ]
[using the formula sin2 x + cos2 x = 1]
= 1 – a2 + 1
= 2 – a2
|sin x – cos x|2 = 2 – a2
Taking square root on both sides.
Hence
Mark the Correct alternative in the following:
is equal to
A.8 cos x
B. cos x
C. 8 sin x
D. sin x
Given expression,
[by rearranging terms]
[using the formula sin2θ = 2sinθcosθ]
= sin x
Hence
Mark the Correct alternative in the following:
is equal to
A.
B.
C.
D. None of these
Given expression is
[using ]
[using cos2θ = 1 – 2 sin2θ ]
[using sin2θ = 2sinθcosθ ]
[using ]
Mark the Correct alternative in the following:
The value of is
A.
B.
C.
D. None of these
Given expression,
Multiply and divide the expression with
[using the formula sin2θ =2 sin θ cos θ]
Multiply and divide the expression with 2
[using the formula sin2θ =2 sin θ cos θ]
Multiply and divide the expression with 2
[using the formula sin2θ =2 sin θ cos θ]
Multiply and divide the expression with 2
[using the formula sin2θ =2 sin θ cos θ]
Multiply and divide the expression with 2
[using the formula sin2θ =2 sin θ cos θ]
Multiply and divide the expression with 2
As
Hence answer is option D.
Mark the Correct alternative in the following:
If cos 2x + 2 cos x = 1 then, (2 – cos2 x) sin2 x is equal to
A.1
B. -1
C.
D.
Given cos 2x + 2 cos x = 1, we need to find the expression,
(2 – cos2 x) sin2 x
Consider cos 2x + 2 cos x = 1
2cos2 x – 1 + 2 cos x -1 = 0
2cos2 x + 2cos x – 2 = 0
cos2 x + cos x = 1 -------- (1)
Now consider the expression
(2 – cos2 x) sin2 x = (2 – cos2 x)(1-cos2x)
= {2 – (1 – cos x)} { 1- ( 1 – cos x)}
[from equation (1) cos2 x = 1 - cos x]
= (1+ cos x) ( cos x)
= cos x + cos2 x
[from equation (1) cos2 x + cos x = 1]
= 1
Hence (2 – cos2 x) sin2 x = 1, so option A is the answer.
Mark the Correct alternative in the following:
For all real values of x, cot x – 2 cot 2x is equal to
A. tan 2x
B. tan x
C. - cot 3x
D. None of these
Given expression is cot x – 2 cot 2x for all real values of x
Consider
[ using and ]
= tan x
Therefore cot x – 2 cot 2x = tan x.
Option B is the answer.
Mark the Correct alternative in the following:
The value of is
A.0
B.
C. 1
D. None of these
Given expression is
Now
Multiplying and dividing the whole expression with
[using sin 2x = 2 sin x cos x formula]
[using cos 3x = 4cos3x – 3 cos x formula]
[using ]
= 0
Therefore
The answer is option A.
Mark the Correct alternative in the following:
If in a ∆ABC, tan A + tan B + tan C = 0, then cot A cot B cot C =-
A.6
B. 1
C.
D. None of these
Given ABC is a triangle, so ∠ A + ∠ B + ∠ C = 180°
Now applying tan on both sides
tan (A+B +C) = tan (180°)
tan (A + B + C) = 0 ----- (1)
Also given tan A + tan B + tan C = 0 ------ (2)
As per the formula of tan (A+B+C)
Now,
[from equation (1) ]
[from equation (2) ]
By cross multiplying
-tan A tan B tan C = 0
tan A tan B tan C = 0
therefore
Hence cot A cot B cot C = 0
The answer is option D.
Mark the Correct alternative in the following:
If and then λ =
A.
B.
C. 1
D. None of these
Given and
Consider the equation
Now take the LHS of the equation,
cos 3x = 4cos3 x – 3cos x
[using the formula for cos 3x = 4cos3 x – 3cos x]
From the question we know,
Substituting the known cos x values in the cos 3x expansion,
------ (1)
If we compare the RHS of the cos3x equation with the now derived equation (1) we get,
From the here we can clearly say that
Hence the answer is option B.
Mark the Correct alternative in the following:
If 2 tan α = 3 tan β, then tan (α - β) =
A.
B.
C.
D. None of these
Given, 2 tan α = 3 tan β
From here we get, ------ (1)
Now consider tan (α - β),
The expansion of tan (α - β) is given by
As we already know the value of tan α from equation (1), we have,
[ by using ]
Multiplying and dividing the equation with 2
[using sin2θ = 2 sinθ cosθ]
In the denominator adding and subtracting 1
[using cos2θ = 2cos2θ – 1]
Hence, in the question the answer matches with option A.
Mark the Correct alternative in the following:
If then
A.tan 3 α = tan 2 β ok
B. tan 2 α = tan β
C. tan 2 α = tan α
D. None of these
Given,
As there are 2 option in terms of tan 2A, let us consider tan 2A
[by using the formula for ]
[by substituting the value of tan A as given in the problem]
= tan B
Therefore, tan 2A = tan B
Hence the option B is the correct answer.
Mark the Correct alternative in the following:
If sin α + sin β = a and cos α – cos β = b, then
A.
B.
C.
D. None of these
Given, sin α + sin β = a and cos α – cos β = b, then the value of
Consider sin α + sin β = a
As per the expansion of
Now , ----- (1)
Similarly, cos α - cos β = b
As per the expansion of
Now ------ (2)
By dividing equation (1) with (2) we get,
[As ]
Therefore the answer is option B.
Mark the Correct alternative in the following:
The value of is
A.1
B. 2
C. 3
D. 4
Given to find the value of
We will solve the expression in two parts,
Now solving 1st term
If we multiply and divide the term by 2, we get,
[using the formula for and ]
----- (1)
Solving the 2nd term
[using the formula for ]
1 – 2 tan x cot 2x = 1 – ( 1 – tan2x)
= 1 – 1 + tan2x
1 – 2 tan x cot 2x = tan2 x ----- (2)
Now by combining (1) and (2) we get,
Hence the answer is option D.
Mark the Correct alternative in the following:
The value of is
A.1
B. -1
C.
D. None of these
Given to find the value of the expression
(as sine is positive in 2nd quadrant)
(as cosine is positive in 1st quadrant)
There for
Hence the answer is option D.
Mark the Correct alternative in the following:
The value of is
A.1
B. 2
C. 4
D. None of these
Given to find the value of
The angles can be modified as and
Using the identity , we have
[using the identity cos2θ + sin2θ = 1]
= 1 + 1 = 2
Hence the answer is option B.
Mark the Correct alternative in the following:
If 5 sin α = 3 sin (α + 2 β) ≠ 0, then tan (α + β) is equal to
A.2 tan β
B. 3 tan β
C. 4 tan β
D. 6 tan β
Given 5 sin α = 3 sin (α + 2 β) ≠ 0, then the value of tan (α + β) is
Consider the given equation,
5 sin α = 3 sin (α + 2 β)
By applying componendo and dividendo
We get
[ using and sum of angles ]
This clearly shows, tan (α + β) = 4 tan β
Hence the answer is option C.
Mark the Correct alternative in the following:
The value of 2 cos x – cos 3x – cos 5x – 16 cos3 x sin2 x is
A.2
B. 1
C. 0
D. -1
Given expression is 2 cos x – cos 3x – cos 5x – 16 cos3 x sin2 x
Consider the expression
2 cos x – cos 3x – cos 5x – 16 cos3 x sin2
= 2 cos x – (cos 5x + cos 3x) – 16 cos3 x sin2 x
[using the sum of angles ]
= 2 cos x – [2 cos 4x cos x] - 16cos3 x sin2 x
= 2 cos x (1 – cos 4x ) - 16cos3 x sin2 x
[ using the property cos 2θ = 1- 2 sin2 θ ]
= 2 cos x [ 1 – (1 – 2 sin2 2x)] -16cos3 x sin2 x
= 2 cos x [2 sin2 2x] -16cos3 x sin2 x
= 4cos x [2sin x cos x]2 -16cos3 x sin2 x
[ using sin 2θ = 2 sin θ cos θ ]
= 4 × 4 (cos x sin2 x cos2 x) -16cos3 x sin2 x
= 16cos3 x sin2 x -16cos3 x sin2 x
= 0
Hence cos x – cos 3x – cos 5x – 16 cos3 x sin2 x = 0
The answer is option C.
Mark the Correct alternative in the following:
If A = 2 sin2 x – cos 2x, then A lies in the interval
A.[-1, 3]
B. [1, 2]
C. [-2, 4]
D. None of these
Given A = 2 sin2 x – cos 2x
[ using cos 2x = 1 – 2 sin2 x ]
so A = 2 sin2 x – cos 2x = 2 sin2 x –[ 1 – 2 sin2 x]
= 2 sin2 x -1 + 2 sin2 x]
= 4 sin2 x – 1
Now A = 2 sin2 x – cos 2x = 4 sin2 x – 1
As we know sin x lies between -1 and 1
-1 ≤ sin x ≤ 1
0 ≤ sin2x ≤ 1
Multiplying the inequality by 4
0 ≤ 4 sin2 x ≤ 4
Subtracting 1 from the inequality
-1 ≤ (4 sin2 x – 1) ≤ 3
From the above inequation, we can say that
A = (4 sin2 x – 1) belongs to the closed interval [-1,3]
Hence the answer is A.
Mark the Correct alternative in the following:
The value of is equal to
A.cos x
B. sin x
C. tan x
D. None of these
Given expression is
Consider
[using the formulae cos 3x = 4 cos3 x – 3 cos x and
cos 2x = 2cos2x -1]
= cos x
Therefore
Hence the answer is option A.
Mark the Correct alternative in the following:
If tan (/4 + x) + tan (/4 – x) = λ sec 2x, then
A.3
B. 4
C. 1
D. 2
Given equation is
Let us consider LHS
[ using the formulae and ]
[ the value of tan 45° = 1 ]
[using the formulae cos 2x = cos2 x – sin2 x and cos2 x + sin2 x = 1]
= 2 sec 2x
Now comparing with the LHS with RHS
From here we can clearly say that the answer is option D.
Mark the Correct alternative in the following:
The value of is
A.
B. 0
C.
D.
Given expression is
[using the identity sin2 x + cos2 x = 1]
[using the formula a2 + b2 = (a + b)2 – 2ab]
[ using the sum of angle formula ]
[Using the identity cos (A+B) – cos (A-B) = -2sinAsinB ]
[multiplying and dividing the term cos2 x with 2]
[using the cos 2θ = 2cos2 θ – 1]
Hence the answer is option A.
Mark the Correct alternative in the following:
is equal to
A.cos x
B. sin x
C. - cos x
D. sin x
Given expression
[Using the formulae sin3x = 3sinx – 4sin3x and cos2x = 1 – 2sin2x]
= sin x
Hence the answer is option B.
Mark the Correct alternative in the following:
The value of 2 sin2 B + 4 cos (A + B) sin A sin B + cos 2 (A + B) is
A.0
B. cos 3 A
C. cos 2A
D. None of these
Given expression is
2 sin2 B + 4 cos (A + B) sin A sin B + cos 2 (A + B)
[ using the cos (A+B) = cos A cos B – sin A sin B]
= 2 sin2 B + 4 sin A sin B [cos A cos B - sin A sin B] + cos 2 (A + B)
= 2 sin2 B + 4 sin A sin B cos A cos B - 4 sin A sin B sin A sin B + cos 2 (A + B)
= 2 sin2 B + (2 sin A cos A) (2sin B cos B) - 4 sin2A sin2 B + cos 2 (A + B)
[ using sin 2A = 2 sin A cos A]
= 2 sin2 B + sin 2A sin 2B - 4 sin2A sin2 B + cos (2A + 2B)
=2 sin2 B ( 1 - 2 sin2A ) + sin 2A sin 2B + (cos2A cos2B - sin 2A sin 2B)
[ using cos (A+B) = cos A cos B – sin A sin B]
=2 sin2 B ( 1 - 2 sin2A )+ sin 2A sin 2B + cos2A cos2B - sin 2A sin 2B
[ using cos 2A = 1 – 2 sin2 x ]
= 2 sin2 B cos 2A + cos2A cos2B
= cos 2A ( 2sin2 B + cos 2B)
[ using cos 2A = cos2 x – sin2 x ]
= cos 2A ( 2 sin2 B + cos2 B – sin2 B)
= cos 2A ( sin2 B + cos2 B)
[using the identity sin2 x + cos2 x = 1]
= cos 2A (1)
= cos 2A
Hence
2 sin2 B + 4 cos (A + B) sin A sin B + cos 2 (A + B) = cos 2A
The answer is option C.
Mark the Correct alternative in the following:
The value of is
A.cos x
B. sec x
C. cosec x
D. sin x
Given expression is
[ using cos 2A = cos2 x – sin2 x ]
[ using and ]
= cosec x
Therefore
Answer is option C.
Mark the Correct alternative in the following:
2(1 – 2 sin2 7x) sin 3x is equal to
A.sin 17x – sin 11x
B. sin 11x – sin 17x
C. cos 17x – cos 11x
D. cos 17x + cos 11x
Given expression is 2(1 – 2 sin2 7x) sin 3x
2(1 – 2 sin2 7x) sin 3x = 2 cos 2(7x) sin 3x
[ using cos 2A = 1 – 2sin2A ]
= 2 cos 14x sin 3x
[using the sum of angles formula ]
= sin (17x) – sin (11x)
Therefore 2(1 – 2 sin2 7x) sin 3x = sin (17x) – sin (11x)
The answer is option A.
Mark the Correct alternative in the following:
If α and β are acute angles satisfying then tan α =
A.
B.
C.
D.
Given for α < 90° and β < 90° ,
Then tan α is given by
Consider
[using componendo and dividend principle, if ]
[ using cos 2x = 1- 2sin2 x = 2cos2x – 1 ]
[ using cos 2x = cos2 x – sin2 x ]
[ using cos2 x + sin2 x = 1]
tan2 α = 2 tan2 β
applying square root on both sides
Hence the answer is option A.
Mark the Correct alternative in the following:
If then cos α =
A.1 – e cos (cos x + e)
B.
C.
D.
Given , then cos α is
Let
By using the expansion of cos 2x in terms of tan x
We get,
Dividing the numerator and denominator by
[using the formula for cos 2x in terms of tan x ]
Hence the answer is option D.
Mark the Correct alternative in the following:
If (2n + 1) x = π, then 2n cos x cos 2x cos22 x ….. cos 2n – 1 x =
A.-1
B. 1
C. 1/2
D. None of these
Given (2n – 1) x = π
Then evaluate the expression
2n cos x cos 2x cos22 x ….. cos 2n – 1 x
by taking a 2 from 2n and multiplying and dividing by sin x, we get
[by using the formula sin 2x = 2 sin x cos x]
Now borrowing another 2 from 2n-1
These iterations repeat till we reach the last term
As already given that
2n x + x = 180°
2n x = 180° - x
So substituting the same in the above solution
So the answer is option B.
Mark the Correct alternative in the following:
If tan x = t then tan 2x + sec 2x is equal to
A.
B.
C.
D.
Given tan x = t
then tan 2x + sex 2x =
[ using the formulae for tan 2x and sec 2x in terms of tan x,
and ]
Now
As already given tan x = t
Hence the answer is option A.
Mark the Correct alternative in the following:
The value of cos4 x + sin4 x – 6 cos2 x sin2 x is
A.cos 2x
B. sin 2x
C. cos 4x
D. None of these
Given expression is cos4 x + sin4 x – 6 cos2 x sin2 x
=[ (cos2x)2 + (sin2x)2 - 2 cos2x sin2x ] - 4 cos2x sin2x
[ using the formula a2 + b2 = (a+b)2 - 2ab]
= (cos2x - sin2x)2 - 4 cos2x sin2x
[ using the formula cos 2x = cos2 x – sin2 x ]
= (cos2x)2 – (2 sinx cosx )2
[ using the formula sin 2x = 2 sin x cos x ]
= (cos 2x)2 – (sin 2x)2
[ using the formula cos 2x = cos2 x – sin2 x ]
= cos 4x
Therefore cos4 x + sin4 x – 6 cos2 x sin2 x = cos 4x
The answer is option A.
Mark the Correct alternative in the following:
The value of cos (36o – A) cos (36o + A) + cos(54o – A) cos (54o + A) is
A.cos 2A
B. sin 2A
C. cos A
D. 0
Given expression
cos (36o – A) cos (36o + A) + cos(54o – A) cos (54o + A)
In the above expression angle cos(54° + A) = sin[90° - (54° +A)]
And cos(54° - A) = sin[90° - (54° +A)]
[using cos θ = sin (90° - θ) ]
Now substituting the same in the expression
= cos (36o – A) cos (36o + A) + sin[90°-(54°–A)] sin[90°-(54° +A)]
= cos (36o – A) cos (36o + A) + sin (36o + A) sin (36o - A)
= cos (36o + A) cos (36o – A) + sin (36o + A) sin (36o - A)
[using cos (A-B) = cos A cos B + sin A sin B ]
= cos [(36° + A) – (36° - A)]
= cos ( 2A )
Therefore the answer is option A.
Mark the Correct alternative in the following:
The value of is
A.cot 3x
B. 2 cot 3x
C. tan 3x
D. 3 tan 3x
Given expression is
[using and ]
Then
[ using a2 – b2 = (a-b)(a+b)]
[using formula ]
= tan 3x
Therefore
The answer is option C.
Mark the Correct alternative in the following:
The value of is
A.3 tan 3x
B. tan 3x
C. 3 cot 3x
D. cot 3x
Given
[using ]
Then
[ using a2 – b2 = (a-b)(a+b)]
[using formula ]
= 3 tan 3x
Therefore
The answer is option A.
Mark the Correct alternative in the following:
The value of is
A.cot α/2
B. cot α
C. tan α/2
D. None of these
Given
[Using
]
[ using and ]
=
Therefore
Answer is option C.
Mark the Correct alternative in the following:
is equal to
A.16 cos4 x – 12 cos2 x + 1
B. 16 cos4 x + 12 cos2 x + 1
C. 16 cos4 x – 12 cos2 x - 1
D. 16 cos4 x + 12 cos2 x - 1
Given
Let 5x = 3x + 2x
Then
[using sin (A+B) = sin A cos B + cos A sin B]
[using the formulae :
sin 3x = 3sin x – 4 sin3x
cos 3x = 4 cos3x – 3 cos x
cos 2x = 2cos2x – 1
sin 2x = 2 sin x cos x ]
= (3 – 4 sin2x)(2cos2x -1) + (4 cos3x – 3cos x)(2cosx)
= (6cos2 x – 3 – 8 sin2 x cos2x + 4 sin2 x) + (8 cos4x - 6 cos2x)
[using sin2x + cos2 x = 1]
= – 3 – 8 (1 - cos2x) cos2x + 4 (1 - cos2x)+ 8cos4x
= – 3 – 8cos2x + 8cos4x + 4 - 4cos2x+8 cos4x
= 16 cos4x – 12 cos2x + 1
Therefore the answer is option A.
Mark the Correct alternative in the following:
If n = 1, 2, 3, …., then cos α cos 2 α cos 4 α … cos 2n – 1 α is equal to
A.
B.
C.
D.
Given expression
cos α cos 2 α cos 4 α … cos 2n – 1 α
multiplying and dividing the expression by 2 sin α , we get,
[using sin 2x = 2 sin x cos x]
Now multiplying and dividing the expression with 2.
Continuing this process for n-1 times we will get
Now repeating for the last time,
This proves that
Hence the answer is option D.
Mark the Correct alternative in the following:
If then b cos 2x + a sin 2x is equal to
A.a
B. b
C.
D.
Given
The value of the expression b cos 2x + a sin 2x
Now consider b cos 2x + a sin 2x
[ by using and ]
As already given
Then
= b
Hence b cos 2x + a sin 2x = b.
The answer is option B.
Mark the Correct alternative in the following:
If then cos 2α is equal to
A.sin 2β
B. sin 4β
C. sin 3β
D. cos 2β
Given and
Now to find the value of cos 2α
[By using ]
[as is given]
Hence
The same value is obtained for sin 4β.
[By sin 2x = 2 sinx cosx]
[using and ]
We have
As
As the value of cos 2α and sin 4α are the same, the answer is option B.
Mark the Correct alternative in the following:
The value of cos2 48o – sin2 12o is
A.
B.
C. D.
Given
cos2 48o – sin2 12o
[by using the formula cos 2x = 2cos2 x – 1 and cos2x = 1 – 2sin2x]
[by using the formula ]
Therefore
Hence the answer is option A.