Prove the following identities
sec4x – sec2x = tan4x + tan2x
LHS = sec4x – sec2x
= (sec2x) 2 – sec2x
We know sec2 θ = 1 + tan2 θ.
= (1 + tan2x) 2 – (1 + tan2x)
= 1 + 2tan2x + tan4x – 1 - tan2x
= tan4x + tan2x = RHS
Hence proved.
Prove the following identities
sin6x + cos6x = 1 – 3 sin2x cos2x
LHS = sin6x + cos6x
= (sin2x)3 + (cos2x)3
We know that a3 + b3 = (a + b) (a2 + b2 – ab)
= (sin2x + cos2x) [(sin2x)2 + (cos2x)2 – sin2x cos2x]
We know that sin2x + cos2x = 1 and a2 + b2 = (a + b)2 – 2ab
= 1 × [(sin2x + cos2x)2 – 2sin2x cos2x – sin2x cos2x
= 12 - 3sin2x cos2x
= 1 - 3sin2x cos2x = RHS
Hence proved.
Prove the following identities
(cosecx – sinx) (secx – cosx) (tanx + cotx) = 1
LHS = (cosecx – sinx) (secx – cosx) (tanx + cotx)
We know that
We know that sin2x + cos2x = 1.
= 1 = RHS
Hence proved.
Prove the following identities
cosecx (secx – 1) – cotx (1 – cosx) = tanx – sinx
LHS = cosecx (secx – 1) – cotx (1 – cosx)
We know that
We know that 1 – cos2x = sin2x.
= RHS
Hence proved.
LHS
We know that
We know that a3 + b3 = (a + b) (a2 + b2 – ab)
We know that sin2x + cos2x = 1.
= sinx
= RHS
Hence proved.
Prove the following identities
= (secx cosecx + 1)
LHS
We know that
We know that a3 - b3 = (a - b) (a2 + b2 + ab)
We know that sin2x + cos2x = 1.
We know that
= cosecx × secx + 1
= secx cosecx + 1
= RHS
Hence proved.
Prove the following identities
LHS
We know that a3 ± b3 = (a ± b) (a2 + b2∓ab)
We know that sin2x + cos2x = 1.
= 1 - sinx cosx + 1 + sinx cosx
= 2
= RHS
Hence proved.
Prove the following identities
(secx sec y + tanx tan y)2 – (secx tan y + tanx sec y)2 = 1
LHS = (secx sec y + tanx tan y)2 – (secx tan y + tanx sec y)2
= [(secx sec y)2 + (tanx tan y)2 + 2 (secx sec y) (tanx tan y)] – [(secx tan y)2 + (tanx sec y)2 + 2 (secx tan y) (tanx sec y)]
= [sec2x sec2 y + tan2x tan2 y + 2 (secx sec y) (tanx tan y)] – [sec2x tan2 y + tan2x sec2 y + 2 (sec2x tan2 y) (tanx sec y)]
= sec2x sec2 y - sec2x tan2 y + tan2x tan2 y - tan2x sec2 y
= sec2x (sec2 y - tan2 y) + tan2x (tan2 y - sec2 y)
= sec2x (sec2 y - tan2 y) - tan2x (sec2 y - tan2 y)
We know that sec2x – tan2x = 1.
= sec2x × 1 – tan2x × 1
= sec2x – tan2x
= 1
= RHS
Hence proved.
Prove the following identities
RHS
We know that sin2x + cos2x = 1.
We know that 1 – cos2x = sin2x.
We know that 1 – sin2x = cos2x.
= LHS
Hence proved.
Prove the following identities
LHS
We know that 1 + tan2x = sec2x and 1 + cot2x = cosec2x
We know that a2 + b2 = (a + b)2 – 2ab
We know that sin2x + cos2x = 1.
= RHS
Hence proved.
Prove the following identities
= sinx cosx
LHS
We know that
We know that a3 + b3 = (a + b) (a2 + b2-ab)
= 1 – (sin2x + cos2x) + sinx cosx
We know that sin2x + cos2x = 1.
= 1 – 1 + sinx cosx
= sinx cosx
= RHS
Hence proved.
Prove the following identities
sin2x cos2x
LHS
We know that
We know that sin2x + cos2x = 1.
= RHS
Hence proved.
Prove the following identities
(1 + tan α tan β)2 + (tan α – tan β)2 = sec2 α sec2 β
LHS = (1 + tan α tan β)2 + (tan α – tan β)2
= 1+ tan2 α tan2 β + 2 tan α tan β + tan2 α + tan2 β – 2 tan α tan β
= 1 + tan2 α tan2 β + tan2 α + tan2 β
= tan2 α (tan2 β + 1) + 1 (1 + tan2 β)
= (1 + tan2 β) (1 + tan2 α)
We know that 1 + tan2 θ = sec2 θ
= sec2 α sec2 β
= RHS
Hence proved.
Prove the following identities
= sin2x cos2x
LHS
We know that
We know that a3 - b3 = (a - b) (a2 + b2+ab)
= sin2x cos2x
= RHS
Hence proved.
Prove the following identities
LHS
We know that 1 – cos2x = sin2x
= cotx
= RHS
Hence proved.
Prove the following identities
cosx (tanx + 2) (2 tanx + 1) = 2 secx + 5 sinx
LHS = cosx (tanx + 2) (2 tanx + 1)
= cosx (2 tan2x + 5 tanx + 2)
We know that
= 2 secx + 5 sinx
= RHS
Hence proved.
If then prove that is also equal to a.
Given
Rationalizing the denominator,
Hence proved.
If find the values of tanx, secx and cosecx
Given
We know that sin2x + cos2x = 1→cos2x =1 – sin2x
If then find the value of
Given tanx = b/a
If show that
Given tanx = a/b
LHS
Dividing by b cosx,
Substituting value of tanx,
= RHS
Hence proved.
If cosecx – sinx = a3, secx – cosx = b3, then prove that a2 b2 (a2 + b2) = 1.
Given cosecx – sinx = a3
We know that cosecx = 1/ sinx.
We know that 1 – sin2x = cos2x
… (1)
Also given secx – cosx = b3
We know that secx = 1/ cosx
We know that 1 – cos2x = sin2x
… (2)
Consider LHS = a2b2 (a2 + b2)
We know that cos2 + sin2x = 1
= 1
= RHS
Hence proved.
If cotx(1 + sinx) = 4m and cotx(1 – sinx) = 4n, prove that (m2 – n2)2 = mn.
Given 4m = cotx (1+ sinx) and 4n = cotx (1 – sinx)
Multiplying both equations, we get
⇒ 16mn = cot2x (1 – sin2x)
We know that 1 – sin2x = cos2x
⇒ 16mn = cot2x cos2x
… (1)
Squaring the given equations and then subtracting,
⇒ 16m2 = cot2x (1+ sinx)2 and 16n2 = cot2x (1 – sinx)2
⇒ 16m2 – 16n2 = cot2x (4 sinx)
Squaring both sides,
… (2)
From (1) and (2),
⇒ (m2 – n2) = mn
Hence proved.
If sinx + cosx = m, then prove that sin6x + cos6x = where m2 ≤ 2
Given sinx + cosx = m
We have to prove that
Proof:
LHS = sin6x + cos6x
= (sin2x)3 + (cos2x)3
We know that a3 + b3 = (a + b) (a2 + b2-ab)
= (sin2x + cos2x)3 – 3sin2x cos2x(sin2x + cos2x)
= 1 – 3 sin2x cos2x
RHS
= 1 – 3 sin2x cos2x
LHS = RHS
Hence proved.
If a = secx – tanx and b = cosecx + cotx, then show that ab + a – b + 1 = 0.
Given a = secx – tanx and b = cosecx + cotx
a and b
LHS = ab + a – b + 1
= 0 = RHS
Hence proved.
Prove that :
where
LHS
[∵ π/2 <x < π and in second quadrant, cosx is negative]
= RHS
Hence proved.
If Tn = sinnx + cosnx, prove that
Given Tn = sinnx + cosnx
LHS
= sin2x cos2x
RHS
= sin2x cos2x
LHS = RHS
Hence proved.
If Tn = sinnx + cosnx, prove that
2 T6 – 3 T4 + 1 = 0
Given Tn = sinnx + cosnx
LHS = 2T6 – 3T4 + 1
= 2 (sin6x + cos6x) – 3 (sin4x + cos4x) + 1
= 2 (sin2x + cos2x) (sin4x + cos4x – cos2x sin2x) – 3 (sin4x + cos4x) + 1
We know that sin2x + cos2x = 1.
= 2 (1) (sin4x + cos4x – cos2x sin2x) – 3 (sin4x + cos4x) + 1
= 2sin4x + 2cos4x – 2sin2x cos2x – 3sin4x – 3cos4x + 1
= - (sin4x + cos4x) – 2sin2x cos2x + 1
= - (sin2x + cos2x) 2 + 1
= - 1 + 1
= 0
= RHS
Hence proved.
If Tn = sinnx + cosnx, prove that
6 T10 – 15 T8 + 10 T6 – 1 = 0
Given Tn = sinnx + cosnx
LHS = 6T10 – 15 T8 + 10T6 – 1
= 6 (sin10x + cos10x) – 15 (sin8x + cos8x) + 10 (sin6x + cos6x) – 1
= 6 (sin6x + cos6x) (sin4x + cos4x) – cos4x sin4x (sin2x + cos2x) - 15 (sin6x + cos6x) (sin2x + cos2x) – cos2x sin2x (sin4x + cos4x) + 10 (sin2x + cos2x) (sin4x + cos4x – cos2x sin2x) – 1
We know that sin2x + cos2x = 1.
= 6 [(1 – 3 sin2x cos2x) (1 – 2 sin2x cos2x) – sin4x cos4x] - 15 [(1 – 3 sin2x cos2x) – sin2x cos2x (1 – 2 sin2x cos2x)] + 10 (1 – 3 sin2x cos2x) – 1
= 6 (1 – 5 sin2x cos2x + 5 sin4x cos4x) – 15 (1 – 4 sin2x cos2x + 2 sin4x cos4x) + 10 (1 – 3 sin2x cos2x) – 1
= 6 – 30 sin2x cos2x + 30 sin4x cos4x – 15 + 60 sin2x cos2x - 30 sin4x cos4x + 10 – 30 sin2x cos2x – 1
= 6 – 15 + 10 – 1
= 0
= RHS
Hence proved.
Find the values of the other five trigonometric functions in each of the following:
cot in quadrant III
Given cotx = 12/5 andx is in quadrant III
In third quadrant, tanx and cotx are positive and sinx, cosx and secx & cosecx are negative.
We know that
Find the values of the other five trigonometric functions in each of the following:
cos in quadrant II
Given cotx = -1/2 andx is in quadrant II
In second quadrant, sinx and cosecx are positive and tanx, cotx and cosx & secx are negative.
We know that
Find the values of the other five trigonometric functions in each of the following:
tan in quadrant III
Given tanx = 3/4 andx is in quadrant III
In third quadrant, tanx and cotx are positive and sinx, cosx, secx and cosecx are negative.
We know that
Find the values of the other five trigonometric functions in each of the following:
sin in quatrant I
Given sinx = 3/5 andx is in first quadrant.
In first quadrant, all trigonometric ratios are positive.
We know that
If sin and lies in the second quadrant, find the value of secx + tanx.
Given sinx = 12/13 andx lies in the second quadrant.
In second quadrant, sinx and cosecx are positive and all other ratios are negative.
We know that
We know that tanx = sinx /cosx and secx = 1/cosx
⇒
⇒
∴
If sin tan and find the value of 8 tan
Given sinx = 3/5, tan y = 1/2 and
Thus, x is in second quadrant and y is in third quadrant.
In second quadrant, cosx and tanx are negative.
In third quadrant, sec y is negative.
We know that
⇒
⇒
We know that
If sinx + cosx = 0 andx lies in the fourth quadrant, find sinx and cosx.
Given sinx + cosx = 0 andx lies in fourth quadrant.
⇒sinx = -cosx
∴ tanx = -1
In fourth quadrant, cosx and secx are positive and all other ratios are negative.
We know that
If cos and find the values of other five trigonometric functions and hence evaluate
Given cosx= -3/5 and π <x < 3π/2
It is in the third quadrant. Here, tanx and cotx are positive and all other rations are negative.
We know that
⇒
⇒
⇒
⇒
Find the values of the following trigonometric ratios:
Given sin
⇒
300° lies in fourth quadrant in which sine function is negative.
∴
Find the values of the following trigonometric ratios:
sin 17 π
Given sin 17π
⇒ sin 17π =sin 3060°
⇒ 3060° =90° × 34 + 0°
3060° is in negative direction of x-axis i.e. on boundary line of II and III quadrants.
∴ sin (3060°)= sin(90° × 34 + 0°)
= -sin 0°
= 0
Find the values of the following trigonometric ratios:
Given tan(11π/6)
⇒
=330°
330° lies in fourth quadrant in which tangent function is negative.
∴
=tan (90° × 3+60°)
=-cot 60°
=
Find the values of the following trigonometric ratios:
Given
⇒
⇒ cos (-1125°) = cos (1125°)
= cos (90° × 12 + 45°)
1125° lies in first quadrant in which cosine function is positive.
∴ cos (1125°) = cos (90°× 12 + 45°)
= cos (45°)
= 1/√2
Find the values of the following trigonometric ratios:
Given tan 7π/4
⇒ 315° = (90° × 3 + 45°)
315° lies in fourth quadrant in which tangent function is negative.
∴ tan (315°) = tan (90° × 3 + 45°)
=-cot 45°
=-1
Find the values of the following trigonometric ratios:
Given
⇒ 510° = (90° × 5 + 60°)
510° lies in second quadrant in which sine function is positive.
∴sin (510°) = sin (90° × 5 + 60°)
= cos (60°)
= 1/2
Find the values of the following trigonometric ratios:
Given
⇒ 570° = (90° × 6 + 30°)
570° lies in third quadrant in which cosine function is negative.
∴ cos (570°) = cos (90° × 6 + 30°)
= -cos (30°)
Find the values of the following trigonometric ratios:
Given
⇒ -sin 330° = -sin (90° × 3 + 60°)
330° lies in the fourth quadrant in which the sine function is negative.
∴ sin (-330)° = -sin (90° × 3 + 60°)
= - (-cos 60°)
= - (-1/2)
= 1/2
Find the values of the following trigonometric ratios:
Given
⇒ cosec (-1200°) = cosec (1200°)
=cosec (90° × 13 + 30)
1200° lies in second quadrant in which cosec function is positive.
∴ cosec (-1200°)= -cosec (90° × 13 + 30°)
= -sec 30°
Find the values of the following trigonometric ratios:
Given
⇒ -tan 585° = -tan (90° × 6 + 45°)
585° lies in the third quadrant in which the tangent function is positive.
∴ tan (-585)° = -tan (90° × 6 + 45°)
= - (tan 45°)
= -1
Find the values of the following trigonometric ratios:
Given
⇒ 855° = 90° × 9 + 45°
855° lies in the second quadrant in which the cosine function is negative.
∴ cos 855° = cos (90° × 9 + 45°)
= -sin 45°
Find the values of the following trigonometric ratios:
Given
⇒ sin 1845° = 90° × 20 + 45°
1845° lies in the first quadrant in which the sine function is positive.
∴ sin 1845° = sin (90° × 20 + 45°)
= sin 45°
Find the values of the following trigonometric ratios:
Given
⇒ 1755° = 90° × 19 + 45°
1755° lies in the fourth quadrant in which the cosine function is positive.
∴ cos 1755° = cos (90° × 19 + 45°)
= sin 45°
Find the values of the following trigonometric ratios:
Given
⇒ sin 4530° = 90° × 50 + 30°
4530° lies in the third quadrant in which the sine function is negative.
∴ sin 4530° = sin (90° × 50 + 30°)
= - sin 30°
= -1/2
prove that :
tan 225o cot 405o + tan 765o cot 675o = 0
LHS = tan 225° cot 405° + tan 765° cot 675°
= tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°)
We know that when n is odd, cot→tan.
= tan 45° cot 45° + tan 45° [-tan 45°]
= tan 45° cot 45° - tan 45° tan 45°
= 1 × 1 – 1 × 1
= 1 – 1
= 0
= RHS
Hence proved.
prove that :
LHS
= sin 480° cos 690° + cos 780° sin 1050°
= sin (90° × 5 + 30°) cos (90° × 7 + 60°) + cos (90° × 8 + 60°) sin (90° × 11 + 60°)
We know that when n is odd, sin→cos and cos→sin.
= cos 30° sin 60° + cos 60° [-cos 60°]
= 3/4 - 1/4
= 2/4
= 1/2
= RHS
Hence proved.
prove that :
cos 24o + cos 55o + cos 125o + cos 204o + cos 300o =
LHS = cos 24° + cos 55° + cos 125° + cos 204° + cos 300°
= cos 24° + cos (90° × 1 – 35°) + cos (90° × 1 + 35°) + cos (90° × 2 + 24°) + cos (90° × 3 + 30°)
We know that when n is odd, cos→sin.
= cos 24° + sin 35° - sin 35° - cos 24° + sin 30°
= 0 + 0 + 1/2
= 1/2
= RHS
Hence proved.
prove that :
tan (-225o) cot (-405o) – tan (-765o) cot (675o) = 0
LHS = tan (-225o) cot (-405o) – tan (-765o) cot (675o)
We know that tan (-x) = -tan (x) and cot (-x) = -cot (x).
= [-tan (225°)] [-cot (405°)] – [-tan (765°)] cot (675°)
= tan (225°) cot (405°) + tan (765°) cot (675°)
= tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°)
= tan 45° cot 45° + tan 45° [-tan 45°]
= 1 × 1 + 1 × (-1)
= 1 – 1
= 0
= RHS
Hence proved.
prove that :
cos 570o sin 510o + sin (-330o) cos (-390o) = 0
LHS = cos 570o sin 510o + sin (-330o) cos (-390o)
We know that sin (-x) = -sin (x) and cos (-x) = +cos (x).
= cos 570o sin 510o + [-sin (330o)] cos (390o)
= cos 570o sin 510o - sin (330o) cos (390o)
= cos (90° × 6 + 30°) sin (90° × 5 + 60°) – sin (90° × 3 + 60°) cos (90° × 4 + 30°)
We know that cos is negative at 90° + θ i.e. in Q2 and when n is odd, sin→cos and cos→sin.
= -cos 30° cos 60° - [-cos 60°] cos 30°
= -cos 30° cos 60° + cos 60° cos 30°
= 0
= RHS
Hence proved.
prove that :
LHS
= tan (90° × 7 + 30°) – 2 sin (90° × 1 + 30°) – 3/4 [cosec 45°]2 + 4 [cos (90° × 5 + 60°)]2
We know that tan and cos is negative at 90° + θ i.e. in Q2 and when n is odd, tan→cot, sin→cos and cos→sin.
= [-cot 30°] – 2 cos 30° - 3/4 [cosec 45°]2 + [-sin 60°]2
= - cot 30° - 2 cos 30° - 3/4 [cosec 45°]2 + [sin 60°]2
= RHS
Hence proved.
prove that :
LHS
= 3 sin 30° sec 60° - 4 sin 150° cot 45°
= 3 sin 30° sec 60° - 4 sin (90° × 1 + 60°)cot 45°
We know that when n is odd, sin→cos.
= 3 sin 30° sec 60° - 4 cos 60° cot 45°
= 3 (1/2) (2) – 4 (1/2) (1)
= 3 – 2
= 1
= RHS
Hence proved.
Prove that :
LHS
= 1
= RHS
Hence proved.
Prove that :
LHS
We know that when n is odd, cosec→sec and also sec (-x) = secx.
= 1 + 1
= 2
= RHS
Hence proved.
Prove that :
LHS
We know that cosec (-x) = -cosecx.
We know that when n is odd, cos→sin, tan→cot and sin→cos.
= 1
= RHS
Hence proved.
Prove that :
LHS
= {1 + cotx – (-cosecx)} {1 + cotx + (-cosecx)}
= {1 + cotx + cosecx} {1 + cotx – cosecx}
= {(1 + cotx) + (cosecx)} {(1 + cotx) – (cosecx)}
We know that (a + b) (a – b) = a2 – b2
= (1 + cotx)2 – (cosecx)2
= 1 + cot2x + 2 cotx – cosec2x
We know that 1 + cot2x = cosec2x
= cosec2x + 2 cotx – cosec2x
= 2 cotx
= RHS
Hence proved.
Prove that :
LHS
We know that sin (-x) = -sinx.
We know that when n is odd, tan→cot and cosec→sec.
= 1
= RHS
Hence proved.
Prove that :
LHS
We know that when n is odd, sin→cos.
We know that sin2 + cos2x = 1.
= 1 + 1
= 2
= RHS
Hence proved.
Prove that :
LHS
We know that sec (-x) = sec (x) and tan (-x) = -tan (x).
We know that when n is odd, sec→cosec and tan→cot.
= [-cosecx] [cosecx] - [-cotx] [cotx]
= -cosec2x + cot2x
= - [cosec2x – cot2x]
We know that cosec2x – cot2x = 1
= -1
= RHS
Hence proved.
In a ∆ABC, prove that :
i. cos (A + B) + cos C = 0
ii.
iii.
We know that in ΔABC, A + B + C = π
(i) Here A + B = π – C
LHS = cos (A + B) + cos C
= cos (π – C) + cos C
We know that cos (π – C) = -cos C
= -cos C + cos C
= 0
= RHS
Hence proved.
(ii) ⇒ A + B = π – C
LHS
We know that
= RHS
Hence proved.
(iii)
⇒ A + B = π – C
LHS
We know that
= RHS
Hence proved
If A, B, C, D be the angles of a cyclic quadrilateral taken in order prove that :
cs(180o – A) + cos (180o + B) + cos (180o + C) – sin (90o + D) = 0
Given A, B, C and D are the angles of a cyclic quadrilateral.
∴ A + C = 180° and B + D = 180°
⇒ A = 180° – C and B = 180° - D
Now, LHS = cos (180o – A) + cos (180o + B) + cos (180o + C) – sin (90o + D)
= -cos A + [-cos B] + [-cos C] + [-cos D]
= -cos A – cos B – cos C – cos D
= -cos (180° - C) – cos (180° - D) – cos C – cos D
= -[-cos C] – [-cos D] – cos C – cos D
= cos C + cos D – cos C – cos D
= 0
= RHS
Hence proved.
Find x from the following equations:
⇒ cosec (90° + θ) +x cos θ cot (90° + θ) = cos θ
We know that when n is odd, cot → tan.
⇒ sec θ +x cos θ [-tan θ] = cos θ
⇒ sec θ –x cos θ tan θ = cos θ
⇒ sec θ –x cos θ (sin θ/ cos θ) = cos θ
⇒ sec θ –x sin θ = cos θ
⇒ sec θ – cos θ =x sin θ
We know that 1 – cos2 θ = sin2 θ
⇒ tan θ =x
∴x = tan θ
Find x from the following equations:
Given
⇒x cot (90° + θ) + tan (90° + θ) sin θ + cosec (90° + θ) = 0
⇒x [-tan θ] + [-cot θ] sin θ + sec θ = 0
⇒ -x sin θ – cos2 θ + 1 = 0
We know that 1 – cos2 θ = sin2 θ
⇒ -x sin θ + sin2 θ = 0
⇒x sin θ = sin2 θ
⇒x = sin2 θ/ sin θ
∴x = sin θ
Prove that:
LHS
= tan 720° - cos 270° - sin 150° cos 120°
= tan (90° × 8 + 0°) – cos (90° × 3 + 0°) – sin (90° × 1 + 60°) cos (90° × 1 + 30°)
We know that when n is odd, cos→sin and sin→cos.
= tan 0° - sin 0° - cos 60° [-sin 30°]
= tan 0° - sin ° + cos 60° sin 30°
= 0 – 0 + 1/2 (1/2)
= 1/4
= RHS
Hence proved.
Prove that:
LHS
= sin 780° sin 480° + cos 120° sin 150°
= sin (90° × 8 + 60°) sin (90° × 5 + 30°) + cos (90° × 1 + 30°) sin (90° × 1 + 60°)
We know that when n is odd, cos→sin and sin→cos.
= sin 60° cos 30° + [-sin 30°] cos 60°
= sin 60° cos 30° - sin 30° cos 60°
We know that sin A cos B – cos A sin B = sin (A – B)
= sin (60° - 30°)
= sin 30°
= 1/2
= RHS
Hence proved.
Prove that:
LHS
= sin 780° sin 120° + cos 240° sin 390°
= sin (90° × 8 + 60°) sin (90° × 1 + 30°) + cos (90° × 2 + 60°) sin (90° × 4 + 30°)
We know that when n is odd, sin→cos.
= sin 60° cos 30° + [-cos 60°] sin 30°
= sin 60° cos 30° - sin 30° cos 60°
We know that sin A cos B – cos A sin B = sin (A – B)
= sin (60° - 30°)
= sin 30°
= 1/2
= RHS
Hence proved.
Prove that:
LHS
= sin 600° cos 390° + cos 480° sin 150°
= sin (90° × 6 + 60°) cos (90° × 4 + 30°) + cos (90° × 5 + 30°) sin (90° × 1 + 60°)
We know that when n is odd, sin→cos and cos→sin.
= [-sin 60°] cos 30° + [-sin 30°] cos 60°
= -sin 60° cos 30° - sin 30° cos 60°
= -[sin 60° cos 30° + cos 60° sin 30°]
We know that sin A cos B + cos A sin B = sin (A + B)
= -sin (60° + 30°)
= -sin 90°
= -1
= RHS
Hence proved.
Prove that:
LHS
= tan 225° cot 405° + tan 765° cot 675°
= tan (90° × 2 + 45°) cot (90° × 4 + 45°) + tan (90° × 8 + 45°) cot (90° × 7 + 45°)
We know that when n is odd, cot→tan.
= tan 45° cot 45° + tan 45° [-tan 45°]
= tan 45° cot 45° - tan 45° tan 45°
= 1 × 1 – 1 × 1
= 1 – 1
= 0
= RHS
Hence proved.
Write the maximum and minimum values of cos (cos x).
Let cos x = t
Range of t =(-1,1)
∴ Maximum and Minimum value of cos x is 1 and -1 respectively.
Now,
cos(-x) = cos x
∴ Range of cos(cos x) = [cos(1),cos(0)]
⇒ cos(cos x) = [cos1,0]
Write the maximum and minimum values of sin (sin x).
sin(x) has maximum value at x = π/2 and its minimum at
x = -π/2 which are 1 and -1 respectively.
As 1 < π/2;
so, the argument of the outer sin always lies within the interval
[-π/2, π/2]
So the maximum and minimum of the given function are
sin 1 and - sin 1.
Write the maximum value of sin (cos x).
Value of cos(x) varies from -1 to 1 for all R and sin(x) is increasing in [-π/2,π/2]
∴ sin(cos x) has max value of sin1.
If sin x = cos2 x, then write the value of cos2 x (1 + cos2 x).
Given sin x = cos2x
To find the value of cos2 x (1 + cos2 x).
⇒ cos2 x (1 + cos2 x).
⇒ cos2 x + cos4 x.
As cos2x = 1- sin2x the above equation becomes
⇒ 1- sin2x + sin2x
⇒ 1.
If sin x = cosec x = 2, then write the value of sinn x + cosecn x.
(Question might be different)
sin x+ cosec x = 2
⇒
⇒ sin2x +1 = 2sin x
⇒ sin2x - 2sin x+1 = 0
⇒ (sin x-1)2=0
⇒ sin x = 1
As sin x = 1
sinnx = 1
∴ sinn x + cosecnx
⇒
⇒ 2.
If sin x + sin2 x = 1, then write the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.
Given: sin x + sin2x = 1
To find the value of cos12 x + 3 cos10 x + 3 cos8 x + cos6 x.
⇒ sin x = 1 – sin2x
⇒ sin x = cos2x
⇒ cos12x = sin6x, cos10x = sin5x, cos8x = sin4x, cos6x = sin3x.
Substituting above values in given equation we get
⇒ sin6x + 3sin5x + 3sin8x + sin3x [(a+b)3 = a3+3a2b+3ab2+b3]
⇒ (sin x + sin2 x)3 = (1)3
⇒ 1.
If sin x + sin2 x = 1, then write the value of cos8 x + 2 cos6 x + cos4 x.
Given: sin x + sin2x = 1
To find the value of cos8 x + 2 cos6 x + cos4 x.
⇒ sin x = 1 – sin2x
⇒ sin x = cos2x
⇒ cos8x = sin4x, cos6x = sin3x, cos4x = sin2x .
Substituting above values in given equation we get
⇒ sin4x+2 sin3x+ sin2x [(a+b)2 = a2+2ab+b2]
⇒ (sin x + sin2 x)2 = (1)2
⇒ 1
If sin θ1 + sin θ2 + sin θ3 = 3, then write the value of cos θ1 + cos θ2 + cos θ3.
Given that sin θ1 + sin θ2 + sin θ3 = 3
We know that in general the maximum value of sin θ = 1 when θ = π/2
As sin θ1 + sin θ2 + sin θ3 = 3
⇒ θ1= θ2 = θ3 = π/2.
The above case is the only possible condition for the given condition to satisfy.
∴ cos θ1 + cos θ2 + cos θ3
⇒ cos π/2 + cos π/2 + cos π/2
⇒ 0+0+0
⇒ 0.
Write the value of sin 10° + sin 20° + sin 30° + ... + sin 360°.
We know sin(180+θ ) = -sin θ
Also, sin(360-θ ) = -sin θ
Given all angles are complementary in nature.
sin350 = sin(360-10) = -sin10°
so finally each of them cancel each other and finally we get
the sum equal to 0.
A circular wire of radius 15 cm is cut and bent so as to lie along the circumference of a loop of radius 120 cm. Write the measure of the angle subtended by it at the centre of the loop.
Let the angle subtended be θ.
For calculating we have the formula
⇒ θ = 45°
Write the value of 2 (sin6 x + cos6 x) − 3 (sin4 x + cos4 x) + 1.
sin6x + cos6x = (sin2x)3 + (cos2x)3
=(sin2x + cos2x)(sin4x+cos4x-sin2xcos2x)
= 1 (sin4x + cos4x – sin2xcos2x)
Substituting above value in given equation
⇒ 2(sin4x + cos4x – sin2xcos2x)-3(sin4 x + cos4 x)+1
⇒ 2sin4x + 2cos4x – 2sin2xcos2x – 3sin4x-3cos4x+1.
⇒ -sin4x-cos4x-2sin2xcos2x+1
⇒ -[(sin2x)2+(cos2x)2-2sin2xcos2x]+1
⇒ -[( sin2x + cos2x)2]+1
⇒ -1+1
⇒ 0.
Write the value of cos 1° + cos 2° + cos 3° + ... + cos 180°.
The given expression can be rearranged as:
(Cos 1 + cos 179) + (cos2 + cos 178) + (cos3+ cos177) +…. + (cos89 + cos 91) + (cos90) + cos180
We know that: cos(180 - x)= - cos x.
So all the bracket totals except last 2 terms will be zero.
So given expression is: 0 + (cos90) + ( cos180)
= 0 + 0 + (-1)
=-1.
If cot (α + β) = 0, then write the value of sin (α + 2β).
Given: cot(α + β) = 0
∴
⇒ cotα.cotβ = 1
Now,
Sin(α +2β ) = sinα.cos2β + cosα.sin2β
=sin α (2 cos2 β-1)+cos α.2 sin β.cos β
If tan A + cot A = 4, then write the value of tan4 A + cot4 A.
Given: tanA + cotA = 4
⇒
Squaring both sides we get
⇒
⇒
⇒
Squaring both sides we get
⇒
⇒
⇒
Write the least value of cos2 x + sec2 x.
We know that cos2x and sec2x ≥ 0
∴ By applying AM and GM we get,
⇒
⇒ cos2 x + sec2 x≥2
∴ Least value of the given function is 2.
If x = sin14x + cos20 x, then write the smallest interval in which the value of x lie.
We know the range of sin x is
-1≤ sin x ≤ 1
∴ 0≤ sin14x ≤ 1
We know the range of cos x is
-1≤ cos x ≤ 1
∴ 0≤ cos20x ≤ 1
0< sin14x + cos20x≤2
which means that the value of x lies in the interval [0,2]
But there's a problem, when sine is 0 cosine is 1, they might even be 0 and -1 at particular points (not in this case, since they are even powers), so the minimum we would get should be more than 0. Hence the value of x lies in (0,1]
If 3 sin x + 5 cos x = 5, then write the value of 5 sin x − 3 cos x.
⇒ 3 sin x +5cos x = 5
⇒ 3sin x = 5-5cos x
⇒ 3sin x = 5(1-cos x)
Squaring both sides we get
⇒ 9sin2x = 25(1-cos x)2
⇒ 9sin2x = 25(1+cos2x-2cos x)
⇒ 9sin2x+9cos2x = 25 + 25cos2x - 50cos x + 9cos2x
⇒ 9(sin2x+ cos2x) = 25 +34cos2x-50cos x
⇒ 34cos2x-50cos x+16=0
⇒ 17cos2x-25cos x+8=0
⇒ 17cos2x-17cos x-8cos x+8=0
⇒ 17cos x(cos x-1)-8(cos x-1)=0
When cos x = 1
3sin x + 5cos x = 5
3sin x = 0
Sin x = 0
Substituting the value cos x = 1 and sin x = 0
5(0)-3(1) = 0-3
⇒ -3.
⇒
⇒ sin2x+ cos2x = 1
⇒ sin2x = 1- cos2x
⇒ 5sin x – 3cos x
∴ -3 and 3.
Mark the correct alternative in the following:
If , then sec x − tan x is equal to
A.
B.
C. 2x
D.
⇒ sec x – tan x
⇒ sec x – tan x
⇒ -2x
∴ the value of sec x – tan x = -2x, 1/2x.
Mark the correct alternative in the following:
If , then sec x + tan x =
A.
B.
C.
D.
⇒ sec x – tan x
⇒ sec x – tan x
⇒ 2x
∴ the value of sec x – tan x = 2x, 1/2x.
Mark the correct alternative in the following:
If , then is equal to
A. sec x − tan x
B. sec x + tan x
C. tan x − sec x
D. none of these
Given:
Now
(Rationalizing we get)
⇒ sec x – tan x
In the given range tan x = -tan x and sec x is –sec x
∴ -sec x-(-tan x)
⇒ tan x – sec x
Mark the correct alternative in the following:
If π < x < 2 π, then is equal to
A. cosec x + cot x
B. cosec x − cot x
C. − cosec x + cot x
D. − cosec x − cot x
Given:
⇒ π<x<2π
Now
(Rationalizing we get)
⇒ cosec x + cot x
In the given range cot x = -cot x and cosec x is –cosec x
∴ -cosec x-(+cot x)
⇒ -cosec x – cot x
Mark the correct alternative in the following:
If , and if , then y is equal to
A.
B.
C.
D.
If 0 < x < π/2 then we take . So, that square root
is open with positive sign.
Adding 1 on both sides
Mark the correct alternative in the following:
If , then is equal to
A. 2 sec x
B. − 2 sec x
C. sec x
D. − sec x
Mark the correct alternative in the following:
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then x2 + y2 + z2 is independent of
A. θ, ϕ
B. r, θ
C. r, ϕ
D. r
Given:
X = r sin θ cos ϕ
Y = r sin θ sin ϕ
Z = r cos θ
⇒ x2+y2+z2
⇒ (r sin θ cos ϕ )2 + (r sin θ sin ϕ) 2 + (r cos θ )2
⇒ r2sin2θcos2ϕ + r2sin2θsin2ϕ + r2cos2θ
⇒ r2sin2θ(cos2ϕ+ sin2ϕ) + r2cos2θ
⇒ r2sin2θ + r2cos2θ
⇒ r2(sin2θ + cos2θ)
⇒ r2.
∴ It is independent of θ and ϕ .
Mark the correct alternative in the following:
If , then x is equal to
A.
B.
C.
D.
Given: tan x + sec x = √3
squaring on both sides
(tan x + sec x)2 = √32
tan2x+sec2x+2 tan x sec x = 3
Also, sec2x - tan2x = 1
tan2x + 1+ tan2x+ 2tan x sec x = 3
2tan2x+2tan x sec x = 3-1
tan2x+tan x sec x = 2/2
tan2x+tan x sec x = 1
tan x sec x = 1 - tan2x
again, squaring on both sides
tan2x sec2x = 1 + tan4x - 2 tan2x
(1+ tan2x) tan2x = 1 + tan4x - 2 tan2x
Tan4x + tan2x = 1 + tan4x - 2 tan2x
3 tan2x = 1
tan x = 1/√3
x = π/6.
Mark the correct alternative in the following:
If and x lies in the IV quadrant, then the value of cos x is
A.
B.
C.
D.
In IV quadrant cos x is positive
We know
tan2x + 1 =sec2x
Mark the correct alternative in the following:
If , then is equal to
A. 1 − cot α
B. 1 + cot α
C. − 1 + cot α
D. − 1 − cot α
Given:
We know csc2α = cot2α +1
⇒ cotα +1
In the given range cot is negative
∴ -1-cotα
Mark the correct alternative in the following:
sin6 A + cos6 A + 3 sin2 A cos2 A =
A. 0
B. 1
C. 2
D. 3
sin6A + cos6A = (sin2A)3 + (cos2A)3
=(sin2A+ cos2A)(sin4A+cos4A-sin2Acos2A)
= 1 (sin4A + cos4A – sin2Acos2A)
∴ sin4A + cos4A – sin2Acos2A+ 3 sin2 A cos2 A
⇒ sin4A + cos4A + 2sin2Acos2A
⇒ (sin2A + cos2A)2
= 12
=1
Mark the correct alternative in the following:
If , then cos x is equal to
A.
B.
C.
D.
Given:
Let cosec x =a, cot x = b
∴ According to the question
⇒
But, cosec2x –cot2x =1
⇒ a2 – b2 = 1
⇒ (a-b) (a + b) = 1
⇒ a + b=2
a-b =1/2 …(1)
a + b =2 …(2)
Adding (1) and (2)
2a = 1/2+2
⇒ a = 5/4
Cos2x = 1 – sin2x
Mark the correct alternative in the following:
If , then tan x =
A.
B.
C.
D.
Let cosec x =a, cot x = b
∴ According to the question
⇒
But, cosec2x –cot2x =1
⇒ a2 – b2 = 1
⇒ (a-b)(a + b) = 1
Adding (1) and (2)
Mark the correct alternative in the following:
is true if and only if
A.
B.
C. x = y
D.
First of all we need to check the condition on x
If x = 0 then sec2x attains to infinity, so that condition must be true i.e x should not be zero
Again if x+y =0 then the RHS part becomes infinity so that condition must be true i.e. x+y should not be zero.
∴ Option B is the correct answer.
Mark the correct alternative in the following:
If x is an acute angle and , then the value of is
A. 3/4
B. 1/2
C. 2
D. 5/4
Given x is an acute angle and value of tan x =1/√7.
⇒ We know tan2x + 1 = sec2x
⇒ Also, cot2x+1 = cosec2x
⇒ cot2 x=7
⇒ cot2x+1 = 7+1
=8
⇒ cosec2x = 8
∴
⇒
⇒
⇒
Mark the correct alternative in the following:
The value of sin2 5° + sin2 10° + sin2 15° + … + sin2 85° + sin2 90° is
A. 7
B. 8
C. 9.5
D. 10
=sin25+sin210+sin215+.......sin245+...........+sin275+sin280+sin285+sin290
We know that sin(90-x) =cos x
So sin2(90-x)= cos2x
=sin25+sin210+sin215+.......sin245+...........+cos215+cos210+cos25+sin290
And sin2x+cos2x= 1
So, in given series on rearranging terms we get 8 cases where sin2x+cos2x= 1
So, given changes to
8+sin245+sin290
= 9.5
Mark the correct alternative in the following:
A. 1
B. 4
C. 2
D. 0
We know that sin(90-x) =cos x
So sin2(90-x)= cos2x
And sin2x+cos2x= 1
Rearranging we get,
=1+1
=2
Mark the correct alternative in the following:
If tan A + cot A = 4, then tan4 A + cot4 A is equal to
A. 110
B. 191
C. 80
D. 194
Given: tan A + cot A = 4
⇒
Squaring both sides we get
Squaring both sides we get
=194
Mark the correct alternative in the following:
If x sin 45° cos2 60°, then x =
A. 2
B. 4
C. 8
D. 16
According to the given question:
⇒ x =8.
Mark the correct alternative in the following:
If A lies in second quadrant and 3 tan A + 4 = 0, then the value of 2 cot A − 5 cos A + sin A is equal to
A. −53/10
B. 23/10
C. 37/10
D. 7/10
Given:
3tanA +4 =0
⇒
tan2x + 1 = sec2x
Because in second quadrant cos is negative.
⇒
sin2x+cos2x= 1
∴ The value of 2 cot A − 5 cos A + sin A =
Mark the correct alternative in the following:
If , then tan x =
A. 21/22
B. 15/16
C. 44/117
D. 117/43
Let cosec x =a, cot x = b
∴ According to the question
But, cosec2x –cot2x =1
⇒ a2 – b2 = 1
⇒ (a-b)(a + b) = 1
a + b =11/2 …(1)
a-b =2/11 …(2)
Adding (1) and (2)
Mark the correct alternative in the following:
If tan θ + sec θ = ex, then cos θ equals
A.
B.
C.
D.
We know tan2x + 1 = sec2x…(1)
Let tan θ be a and sec θ be b
According to question
a + b =ex
Manipulating and Substituting in 1 we get
⇒ a2 – b2 = -1
⇒ (a-b)( a + b) = -1
⇒ (a-b).ex =-1
⇒ a-b = -e-x
a + b =ex
a-b = -e-x
subtracting above equations we get
2b =ex +e-x
Mark the correct alternative in the following:
If sec x + tan x = k, cos x =
A.
B.
C.
D.
We know tan2x + 1 = sec2x…(1)
Let tan x be a and sec x be b
According to question
a + b =k
Manipulating and Substituting in 1 we get
⇒ a2 – b2 = -1
⇒ (a-b)( a + b) = -1
⇒ (a-b).k =-1
⇒ a-b = -k-1
a + b =k
a-b = -k-1
subtracting above equations we get
2b =k +k-1
Mark the correct alternative in the following:
If , the
A. f(x) < 1
B. f(x) = 1
C. 2 < f(x) < 1
D. f(x) ≥ 2
tan2x + 1 = sec2x
sin2x+cos2x= 1
∴ cos2x= 1 - sin2x
Substituting in f(x) we get
1 - sin2x+ tan2x + 1
Minimum value of is 0.
∴ f(x)≥ 2.
Mark the correct alternative in the following:
Which of the following is incorrect?
A. sin x = −1/5
B. cos x = 1
C. sec x = 1/2
D. tan x = 20
Sec x = 1/2 is incorrect because for no real value of x sec x attains 1/2.
Mark the correct alternative in the following:
The value of cos 1° cos 2° cos 3° ... cos 179° is
A.
B. 0
C. 1
D. −1
Cos 1 × cos 2 × cos 3 × ......× cos 179
= cos 1 × cos 2 × cos 3 × .....× cos 90 × ..... × cos 179
= cos 1 × cos 2 × cos 3 × .....× 0 × ..... × cos 179
= 0 × cos 1 × cos 2 × cos 3 × ....... × cos 179
= 0
Mark the correct alternative in the following:
The value of tan 1° tan 2° tan 3° ... tan 89° is
A. 0
B. 1
C. 1/2
D. not defined
tan 1° tan 2° tan 3° ... tan 89° = tan (90° - 89° ) tan(90° - 88° ) tan(90° - 87°) ... tan(90° - 46° ) tan 45° tan 46° …. tan 89°
= cot 89° cot 88° cot 87° ….. cot 46° tan 45° tan 46° ….. tan 89°
(∵ tan(90° - θ ) = cot θ )
= tan 45°
= 1
Mark the correct alternative in the following:
Which of the following is correct?
A. sin 1° > sin 1
B. sin 1° < sin 1
C. sin 1° = sin 1
D.
∴ 1rad = 57.32°
In Range 0 to π/2 sin x is an increasing function
∴ sin1 will always be greater than sin1°
Because sin1 = sin57.32°