Evaluate the following:
(i) i457
(ii) i528
(iii)
(iv)
(v)
(vi) (i77 + i70 + i87 + i414 )3
(vii) (vii) i30 + i40 + i60
(viii) i49 + i68 + i89 + i118
i. i457 = i (456 + 1)
= i4(114) × i
= (1)114 × i = i since i4 = 1
ii. i528 = i4(132)
= (1)132 =1 since i4 = 1
iii.
since i4 = 1
= – 1 since i2 = – 1
iv.
[since i4 = 1]
v.
= (i – i) = 0
[since ]
vi. (i77 + i70 + i87 + i414 )3 = (i(76 + 1) + i(68 + 2) + i(84 + 3) + i(412 + 2) ) 3
(i77 + i70 + i87 + i414 )3 = (i + i2 + i3 + i2 )3
[since i3 = – i, i2 = – 1]
= (i + (– 1) + (– i) + (– 1))3 = (– 2)3
(i77 + i70 + i87 + i414 )3 = –8
vii. i30 + i40 + i60 = i(28 + 2) + i40 + i60
= (i4)7 i2 + (i4)10 + (i4)15
= i2 + 110 + 115 = – 1 + 1 + 1 = 1
viii. i49 + i68 + i89 + i118 = i(48 + 1) + i68 + i(88 + 1) + i(116 + 2)
= (i4)12×i + (i4)17 + (i4)11×i + (i4)29×i2
= i + 1 + i – 1 = 2i
Show that 1 + i10 + i20 + i30 is a real number ?
1 + i10 + i20 + i30 = 1 + i(8 + 2) + i20 + i(28 + 2)
= 1 + (i4)2 × i2 + (i4)5 + (i4)7 × i2
= 1 – 1 + 1 – 1 = 0
[ since i4 = 1, i2 = – 1]
Hence , 1 + i10 + i20 + i30 is a real number.
Find the value of following expression:
i49 + i68 + i89 + i110
i49 + i68 + i89 + i110 = i(48 + 1) + i68 + i(88 + 1) + i(108 + 2)
= (i4)12 × i + (i4)17 + (i4)11 × i + (i4)27 × i2
= i + 1 + i – 1 = 2i
[since i4 = 1, i2 = – 1]
i49 + i68 + i89 + i110 = 2i
Find the value of following expression:
i30 + i80 + i120
i30 + i80 + i120 = i(28 + 2) + i80 + i120
= (i4)7 × i2 + (i4)20 + (i4)30
= – 1 + 1 + 1 = 1
[since i4 = 1, i2 = – 1]
i30 + i80 + i120 = 1
Find the value of following expression:
i + i2 + i3 + i4
i + i2 + i3 + i4 = i + i2 + i2×i + i4
= i – 1 + (– 1)×i + 1
since i4 = 1, i2 = – 1
= i – 1 – i + 1 = 0
Find the value of following expression:
i5 + i10 + i15
i5 + i10 + i15 = i(4 + 1) + i(8 + 2) + i(12 + 3)
= (i4)1×i + (i4)2×i2 + (i4)3×i3
= (i4)1×i + (i4)2×i2 + (i4)3×i2×i
= 1×i + 1×(– 1) + 1×(– 1)×i
= i – 1 – i = – 1
Find the value of following expression:
= i10
= i8 i2
= (i4)2 i2
Since i4 = 1, i2 = -1
= (1)2 (-1)
= -1
Find the value of following expression:
1 + i2 + i4 + i6 + i8 + ... + i20
1 + i2 + i4 + i6 + i8 + ... + i20 = 1 + (– 1) + 1 + (– 1) + 1 + ... + 1
= 1
Find the value of following expression:
(1 + i)6 + (1 – i)3
(1 + i)6 + (1 – i) 3 = {(1 + i)2 }3 + (1 – i)2 (1 – i)
= {1 + i2 + 2i}3 + (1 + i2 – 2i)(1 – i)
= {1 – 1 + 2i}3 + (1 – 1 – 2i)(1 – i)
= (2i)3 + (– 2i)(1 – i)
= 8i3 + (– 2i) + 2i2
[since i3 = – i, i2 = – 1]
= – 8i – 2i – 2
= – 10 i – 2
= – 2(1 + 5i)
Express the following complex numbers in the standard form a + i b :
(1 + i) (1 + 2i)
Given:
⇒ a+ib = (1+i)(1+2i)
⇒ a+ib = 1(1+2i)+i(1+2i)
⇒ a+ib = 1+2i+i+2i2
We know that i2=-1
⇒ a+ib = 1+3i+2(-1)
⇒ a+ib = 1+3i-2
⇒ a+ib=-1+3i
∴ The values of a, b are -1, 3.
Express the following complex numbers in the standard form a + i b :
Given:
⇒
Multiplying and dividing with -2-i
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
∴ The values of a, b are .
Express the following complex numbers in the standard form a + i b :
Given:
⇒
⇒
We know that i2=-1
⇒
⇒
Multiplying and diving with 3-4i
⇒
⇒
⇒
⇒
⇒
∴ The values of a, b is .
Express the following complex numbers in the standard form a + i b :
Given:
⇒
Multiplying and dividing by 1-i
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒
∴ The values of a, b is 0, -1.
Express the following complex numbers in the standard form a + i b :
Given:
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
Multiplying and dividing with 2-3i
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
∴ The values of a, b are .
Express the following complex numbers in the standard form a + i b :
Given:
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
Multiplying and dividing with 1+i
⇒
⇒
⇒
⇒
⇒
⇒
∴ The values of a, b are ,1.
Express the following complex numbers in the standard form a + i b :
Given:
⇒
Multiplying and dividing with 4-5i
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
∴ The values of a, b are .
Express the following complex numbers in the standard form a + i b :
Given:
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
Multiplying and diving with 1-i
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒ a+ib=-3-i
∴ The values of a, b are -3, -1.
Express the following complex numbers in the standard form a + i b :
(1 + 2i)-3
Given:
⇒ a+ib=(1+2i)-3
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒
Multiplying and dividing with 3-2i
⇒
⇒
⇒
⇒
⇒
∴ the values of a, b are .
Express the following complex numbers in the standard form a + i b :
Given:
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
Multiplying and dividing with 6-2i
⇒
⇒
⇒
⇒
⇒
⇒
∴ The values of a, b are .
Express the following complex numbers in the standard form a + i b :
Given:
⇒
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒
⇒
⇒
Multiplying and dividing with 28+10i
⇒
⇒
⇒
⇒
⇒
∴ The values of a, b is
Express the following complex numbers in the standard form a + i b :
Given:
⇒
Multiplying and dividing with 1+i
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
∴ The values of a, b are 1, 2.
Find the real values of x and y, if
(x + i y) (2 – 3i) = 4 + i
Given:
⇒ (x+iy)(2-3i)=4+i
⇒ x(2-3i)+iy(2-3i)=4+i
⇒ 2x-3xi+2yi-3yi2=4+i
We know that i2=-1
⇒ 2x+(-3x+2y)i-3y(-1)=4+i
⇒ (2x+3y)+(-3x+2y)=4+i
Equating Real and Imaginary parts on both sides, we get
⇒ 2x+3y=4 and -3x+2y=1
On solving we get,
⇒
∴ The real values of x and y are .
Find the real values of x and y, if
(3x – 2i y) (2 + i)2 = 10 (1 + i)
Given:
⇒ (3x-2iy)(2+i)2=10(1+i)
⇒ (3x-2yi)(22+i2+2(2)(i))=10+10i
We know that i2=-1
⇒ (3x-2yi)(4+(-1)+4i)=10+10i
⇒ (3x-2yi)(3+4i)=10+10i
Dividing with 3+4i on both sides
⇒
Multiplying and dividing with 3-4i
⇒
⇒
⇒
⇒
⇒
Equating Real and Imaginary parts on both sides we get
⇒
⇒
∴ The values of x and y are .
Find the real values of x and y, if
Given:
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒ (4+2i)x-3i-3+(9-7i)y=10i
⇒ (4x+9y-3)+i(2x-7y-3)=10i
Equating Real and Imaginary parts on both sides we get
⇒ 4x+9y-3=0 and 2x-7y-3=10
⇒ 4x+9y=3 and 2x-7y=13
On solving these equations we get
⇒ x=3 and y=-1
∴ Thee real values of x and y are 3 and -1
Find the real values of x and y, if
(1 + i) (x + i y) = 2 – 5i
Given:
⇒ (1+i)(x+iy)=2-5i
Dividing with 1+i on both sides we get
⇒
Multiplying and dividing with 1-i
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
Equating Real and Imaginary parts on both sides we get
⇒
∴ The real values of x and y are .
Find the conjugates of the following complex numbers:
4 – 5 i
Given complex number is 4-5i
We know that conjugate of a complex number a+ib is a-ib
∴ The conjugate of 4-5i is 4+5i.
Find the conjugates of the following complex numbers:
Given
complex number is
Let us convert this to standard form a+ib,
Multiplying and dividing with 3-5i
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
We know that complex conjugate of a complex number a+ib is a-ib.
⇒
∴ The conjugate of is .
Find the conjugates of the following complex numbers:
Given complex number is
Let us convert this to the standard form a+ib
Multiplying and dividing with 1-i
⇒
⇒
We know that i2=-1
⇒
⇒
We know that complex conjugate of a complex number a+ib is a-ib.
⇒
∴ The conjugate of is
Find the conjugates of the following complex numbers:
Given complex number is
Let us convert this to the standard form a+ib
⇒
⇒
We know that i2=-1
⇒
⇒
Multiplying and dividing with 2-i
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒ a+ib=2-4i
We know that the complex conjugate of a complex number a+ib is a-ib
⇒ a-ib=2+4i
∴ the conjugate of is 2+4i.
Find the conjugates of the following complex numbers:
Given complex number is
Let us convert this to the standard form a+ib
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
Multiplying and dividing with 3-i
⇒
⇒
⇒
⇒
⇒
We know that complex conjugate of a complex number a+ib is a-ib
⇒
∴ The conjugate of is .
Find the conjugates of the following complex numbers:
Given complex number is
Let us convert this into the standard form a+ib
⇒
⇒
We know that i2=-1
⇒
⇒
Multiplying and dividing with 4-3i
⇒
⇒
⇒
⇒
⇒
We know that the complex conjugate of a complex number a+ib is a-ib
⇒
∴ The conjugate of complex number is .
Find the multiplicative inverse of the following complex numbers :
1 – i
Given complex number is Z=1-i
We know that the multiplicative inverse of a complex number Z is .
⇒
Multiplying and dividing with 1+i
⇒
⇒
We know that i2=-1
⇒
⇒
∴ The Multiplicative inverse of 1-i is
Find the multiplicative inverse of the following complex numbers :
(1 + i √3)2
Given complex number is Z=(1+i)2
⇒ Z=12+(i)2+2(1)(i)
⇒ Z=1+3i2+2i
We know that i2=-1
⇒ Z=1+3(-1)+2i
⇒ Z=-2+2i
We know that the multiplicative inverse of a complex number Z is .
⇒
Multiplying and dividing with -2-2i
⇒
⇒
⇒
⇒
⇒
∴ The Multiplicative inverse of (1+i)2 is .
Find the multiplicative inverse of the following complex numbers :
4 – 3 i
Given complex number is Z=4-3i
We know that the multiplicative inverse of a complex number Z is .
⇒
Multiplying and dividing with 4+3i
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
∴ The Multiplicative inverse of 4-3i is .
Find the multiplicative inverse of the following complex numbers :
√5 + 3i
Given complex number is Z=+3i
We know that the multiplicative inverse of a complex number Z is .
⇒
Multiplying and dividing with -3i
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
∴ The Multiplicative inverse of +3i is .
If z1 = 2 – i, z2 = 1 + i, find
Given:
⇒ z1=2-i and z2=1+i
We have to find
We know that is
⇒
⇒
⇒
We know that |a+ib| is .
⇒
⇒
⇒
∴ The value of is .
If z1 = 2 – i, z2 = -2 + i, find
i.
ii.
Given:
⇒ z1=2-i and z2=-2+i
i. We need to find
⇒
⇒
⇒
∴ The Real part of is -2.
ii. We need to find
We know that
⇒
We know that for a complex number Z=a+ib it’s magnitude is given by
⇒
⇒
⇒
⇒
∴ The Imaginary part of the is .
Find the modulus of
Given complex number is
⇒
We know that i2=-1
⇒
⇒
⇒ Z=2i
We know that for a complex number Z=a+ib it’s magnitude is given by
⇒
⇒ |Z|=2
∴ The modulus of is 2
If prove that x2 + y2 = 1
Given:
⇒
We know that for a complex number Z=a+ib it’s magnitude is given by
We know that is
Applying Modulus on both sides we get,
⇒
⇒
⇒
⇒
⇒
Squaring on both sides
⇒
⇒ x2+y2=1
∴ Thus Proved.
Find the least positive integral value of n for which is real.
Let us assume the given complex number be
Multiplying and dividing with 1+i
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒
We know that i2k is real for k>0.
So, the smallest positive integral ‘n’ that can make real is 2.
∴ The smallest positive integral value of ‘n’ is 2.
Find the real values of θ for which the complex number is purely real.
Let us assume the given complex number as
Multiplying and dividing with 1+2icos
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
For a complex number to be purely real, the imaginary part equals to zero.
⇒
⇒ 3cos=0 (∵ 1+4cos2θ≥1)
⇒ cos θ=0
⇒ , for nI
∴ The values of θ to get the complex number to be purely real is for nI.
Find the smallest positive integer value of n for which is a real number.
Let us write the given complex number as
Multiplying and dividing with (1-i)2
⇒
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒
⇒
We know that i2k is real for k≥0.
∴ The least positive integral of n is 1.
If find (x, y)
Given:
⇒
Rationalising denominator
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒ i3–(-i)3=x+iy
⇒ 2i3=x+iy
⇒ 2i2.i=x+iy
⇒ 2(-1)i=x+iy
⇒ -2i=x+iy
Equating Real and Imaginary parts on both sides we get
⇒ x=0 and y=-2
∴ The values of x and y are 0 and -2.
If find x + y.
Given:
⇒
⇒
We know that i2=-1
⇒
⇒
Multiplying and dividing with 2+i
⇒
⇒
⇒
⇒
Equating Real and Imaginary parts on both sides we get
⇒
⇒
⇒
∴ The value of x+y is .
If find (a, b).
Given:
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒ (-i)100=a+ib
⇒ i100=a+ib
⇒ (i2)50=a+ib
⇒ (-1)50=a+ib
⇒ 1=a+ib
Equating Real and Imaginary parts on both sides we get
⇒ a=1 and b=0
∴ The values of a and b are 1 and 0.
If a = cos θ + i sin θ, find the value of
Given:
⇒ a=cosθ+isinθ
⇒
We know that 1+cos2θ=2cos2θ, 1-cos2θ=2sin2θ and sin2θ=2sinθcosθ
⇒
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
∴ The value of is
Evaluate the following :
2x3 + 2x2 – 7x + 72, when
Given:
⇒
⇒ 2x3+2x2-7x+72
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒
⇒
⇒ -68+72
⇒ 4
∴ 2x3+2x2-7x+72=4
Evaluate the following :
x4 – 4x3 + 4x2 + 8x + 44, when x = 3 + 2i
Given:
⇒ x=3+2i
⇒ x4-4x3+4x2+8x+44
⇒ (3+2i)4-4(3+2i)3+4(3+2i)2+8(3+2i)+44
⇒ (34+4(3)3(2i)+6(3)2(2i)2+4(3)(2i)3+(2i)4)-4(33+3(3)2(2i)+3(3)(2i)2+(2i)3)+4(32+(2i)2+2(3)(2i))+24+16i+44
⇒ 81+216i+216i2+96i3+16i4-108-216i-144i2-32i3+36+16i2+48i+24+16i+44
We know that i2=-1
⇒ 77+64i+88i2+64i3+16i4
⇒ 77+64i+88(-1)+64(-1)(i)+16(-1)2
⇒ 5
∴ x4-4x3+4x2+8x+44=5
Evaluate the following :
x4 + 4x3 + 6x2 + 4x + 9, when x = - 1 + i√2
Given:
⇒ x=-1+i
⇒ x+1=i
⇒ (x+1)4=(i)4
⇒ x4+4x3+6x2+4x+1=2i4
We know that i2=-1
⇒ x4+4x3+6x2+4x+1=2(-1)2
⇒ x4+4x3+6x2+4x+1=2
⇒ x4+4x3+6x2+4x+1+8=2+8
⇒ x4+4x3+6x2+4x+9=10
∴ x4+4x3+6x2+4x+9=10
Evaluate the following :
x6 + x4 + x2 + 1, when .
Given:
⇒
⇒ x6+x4+x2+1
⇒ x4(x2+1)+1(x2+1)
⇒ (x4+1)(x2+1)
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒ (-1+1)(i+1)
⇒ (0)(i+1)
⇒ 0
∴ x6+x4+x2+1=0
Evaluate the following :
2x4 + 5x3 + 7x2 – x + 41, when x = - 2 - √3i
Given:
⇒ x=-2-i
⇒ 2x4+5x3+7x2-x+41
⇒ 2(-2-)4+5(-2-i)3+7(-2-i)2-(-2-i)+41
⇒ 2(24+4(2)3(i)+6(2)2(i)2+4(2)(i)3+(i)4)-5(23+3(2)2(i)+3(2)(i)2+(i)3)+7(22+2(2)(i)+(i)2)+2+i+41
⇒ 16+64i+144i2+48i3+18i4-40-60i-90i2-15i3+28+28i+21i2+i+43
We know that i2=-1
⇒ 127+33i+75i2+33i3+18i4
⇒ 127+33i+75(-1)+33(-1)(i)+18(-1)2
⇒ 70
∴ 2x4+5x3+7x2-x+41=70
For a positive integer n, find the value of
Given:
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
∴ The values of .
If then show that
Given:
⇒ (1+i)z=(1-i)
Dividing with (1+i) on both sides we get,
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒ z=-i
∴ Thus proved
Solve the system of equations Re(z2) = 0, |z| = 2.
Given:
⇒ Re(z2)=0 and |z|=2
Let us assume Z=x+iy
⇒ Re(z2)=0
⇒ Re((x+iy)2)=0
⇒ Re(x2+(iy)2+2(x)(iy))=0
⇒ Re(x2+i2y2+i(2xy))=0
We know that i2=-1
⇒ Re(x2-y2+i(2xy))=0
⇒ x2-y2=0----------------------(1)
⇒ |z|=2
⇒
⇒ (x2+y2)=22
⇒ (x2+y2)=4-------------------(2)
Solving (1) and (2) we get
⇒ x= and y=.
∴ .
If is purely imaginary number (z ≠ – 1), find the value of |z|.
Given:
⇒ is purely imaginary
⇒ Let us assume , where K is any real number
Let us assume z=x+iy
⇒
Multiplying and dividing with (x+1)-iy
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
Equating Real and Imaginary parts on both sides we get
⇒
⇒ x2+y2-1=0
⇒ x2+y2=1
⇒
⇒ |z|=1
∴ |z|=1
If z1 is a complex number other than -1 such that |z1| = 1 and then show that the real parts of z2 is zero.
Given:
⇒
Let us assume z1=x+iy
⇒ |Z1|=1
⇒
⇒ x2+y2=1-------------------(1)
⇒
⇒
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒
⇒
∴ z2 is an imaginary one.
If |z + 1| = z + 2(1 + i), find z.
Given:
⇒ |z+1|=z+2(1+i)
Let us assume z=x+iy
⇒ |x+iy+1|=x+iy+2+2i
⇒
Equating Real and Imaginary parts on both sides
⇒ y+2=0
⇒ y=-2----------------(1)
⇒
⇒ (x+1)2+y2=(x+2)2
⇒ x2+2x+1+(-2)2=x2+4x+4
⇒ 2x=1+4-4
⇒ 2x=1
⇒ .
∴ .
Solve the equation |z| = z + 1 + 2i.
Given:
⇒ |z|=z+1+2i
Let us assume z=x+iy
⇒ |x+iy|=x+iy+1+2i
⇒
Equating Real and Imaginary parts on both sides we get
⇒ y+2=0
⇒ y=-2-----------------------(1)
⇒
⇒ x2+(-2)2=(x+1)2
⇒ x2+4=x2+2x+1
⇒ 2x=3
⇒
∴ .
What is the smallest positive integer n for which (1 + i)2n = (1 – i)2n?
Given:
⇒ (1+i)2n=(1-i)2n
⇒ ((1+i)2)n=((1-i)2)n
⇒ (12+i2+2(1)(i))n=(12+i2-2(1)(i))n
We know that i2=-1
⇒ (1-1+2i)n=(1-1-2i)n
⇒ (2i)n=(-2i)n
We can see that the Relation holds only when n is an even integer.
∴ The smallest positive integer n is 2.
If z1, z2, z3 are complex numbers such that then find the value of |z1 + z2 + z3|.
Given:
⇒
⇒
We know that z=|z|2
⇒
⇒
We know that |z|=||
⇒
⇒
∴ |z1+z2+z3|=1.
Find the number of solutions of z2 + |z|2 = 0.
Given:
⇒ z2+|z|2=0
Let us assume z=x+iy
⇒
⇒ x2+(iy)2+2(x)(iy)+x2+y2=0
⇒ 2x2+y2+i2y2+i2xy=0
We know that i2=-1
⇒ 2x2+y2-y2+i2xy=0
⇒ 2x2+i2xy=0
Equating Real and Imaginary parts on both sides we get,
⇒ 2x2=0 and 2xy=0
⇒ x=0 and yR
∴ z=0+iy where yR. i.e, Infinite solutions.
Find the square root of the following complex numbers :
-5 + 12i
Given:
⇒ x+iy=-5+12i
Here y>0
We know that for a complex number z=a+ib
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
∴ .
Find the square root of the following complex numbers :
-7 – 24i
Given:
⇒ x+iy=-7+24i
Here y<0
We know that for a complex number z=a+ib
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
∴ .
Find the square root of the following complex numbers :
1 – i
Given:
⇒ x+iy=1-i
Here y<0
We know that for a complex number z=a+ib
⇒
⇒
⇒
⇒
∴ .
Find the square root of the following complex numbers :
-8 – 6i
Given:
⇒ x+iy=-8-6i
Here y<0
We know that for a complex number z=a+ib
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
∴ .
Find the square root of the following complex numbers :
8 – 15i
Given:
⇒ x+iy=8-15i
Here y<0
We know that for a complex number z=a+ib
⇒
⇒
⇒
⇒
⇒
⇒
⇒
∴ .
Find the square root of the following complex numbers :
-11 – 60 √-1
Given:
⇒
⇒ x+iy=-11-60i
Here y<0
We know that for a complex number z=a+ib
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
∴ .
Find the square root of the following complex numbers :
1 + 4 √-3
⇒
⇒
⇒
Here y>0
We know that for a complex number z=a+ib
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
∴
Find the square root of the following complex numbers :
4i
Given:
⇒ x+iy=4i
Here y>0
We know that for a complex number z=a+ib
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
∴ .
Find the square root of the following complex numbers :
-i
Given:
⇒ x+iy=-i
Here y<0
We know that for a complex number z=a+ib
⇒
⇒
⇒
⇒
⇒
⇒
⇒
∴ .
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form :
1 + i
Given complex number is Z=1+i
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
Now for the given problem,
⇒
⇒
⇒
⇒
Since x>0,y>0 complex number lies in 1st quadrant and the value of θ will be as follows 00≤θ≤900.
⇒
⇒ .
⇒
∴ The Polar form of Z=1+i is .
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form :
√3 + i
Given Complex number is Z=+i
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
Now for the given problem,
⇒
⇒
⇒
⇒
⇒
Since x>0,y>0 complex number lies in 1st quadrant and the value of θ will be as follows 00≤θ≤900.
⇒ .
⇒
∴ The Polar form of Z=+i is .
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form :
1 – i
Given complex number is z=1-i
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
Now for the given problem,
⇒
⇒
⇒
⇒
Since x>0,y<0 complex number lies in 4th quadrant and the value of θ will be as follows -900≤θ≤00.
⇒
⇒ .
⇒
⇒
∴ The Polar form of Z=1+i is .
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form :
Given complex number is
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
⇒ z=0-i
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
Now for the given problem,
⇒
⇒
⇒
⇒ |z|=1
⇒
Since x≥0,y<0 complex number lies in 4th quadrant and the value of θ will be as follows -900≤θ≤00.
⇒
⇒ .
⇒
⇒
∴ The Polar form of is .
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form :
Given complex number is .
⇒
⇒
We know that i2=-1
⇒
⇒
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
Now for the given problem,
⇒
⇒
⇒
⇒
Since x>0,y<0 complex number lies in 4th quadrant and the value of θ will be as follows -900≤θ≤00.
⇒
⇒ .
⇒
⇒
∴ The Polar form of is .
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form :
Given complex number is .
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
Now for the given problem,
⇒
⇒
⇒
⇒
⇒
Since x<0,y>0 complex number lies in 2nd quadrant and the value of θ will be as follows 900≤θ≤1800.
⇒
⇒ .
⇒
∴ The Polar form of is .
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form :
sin 120o – i cos 120o
Given complex number is z=sin1200-icos1200
⇒
⇒
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
Now for the given problem,
⇒
⇒
⇒
⇒ |z|=1
⇒
Since x>0,y>0 complex number lies in 1st quadrant and the value of θ will be as follows 00≤θ≤900.
⇒
⇒ .
⇒
∴ The Polar form of Z=sin1200-icos1200 is .
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form :
Given complex number is
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒ z=-4+i4
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
Now for the given problem,
⇒
⇒
⇒
⇒ |z|=8
⇒
Since x<0,y>0 complex number lies in 2nd quadrant and the value of θ will be as follows 900≤θ≤1800.
⇒
⇒ .
⇒
∴ The Polar form of is .
Write (i25)3 in polar form.
Given Complex number is Z=(i25)3
⇒ Z=i75
⇒ Z=i74.i
⇒ Z=(i2)37.i
We know that i2=-1
⇒ Z=(-1)37.i
⇒ Z=(-1).i
⇒ Z=-i
⇒ Z=0-i
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
Now for the given problem,
⇒
⇒
⇒
⇒ |z|=1
⇒
Since x>0,y<0 complex number lies in 4th quadrant and the value of θ will be as follows -900≤θ≤00.
⇒
⇒ .
⇒
⇒
∴ The Polar form of Z=(i25)3 is .
Express the following complex numbers in the form
1 + i tan α
Given Complex number is Z=1+itanα
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
We know that tanα is a periodic function with period .
We have lying in the interval
Case1:
⇒
⇒
⇒
⇒
Since sec is positive in the interval
⇒
⇒
⇒
Since tan is positive in the interval
⇒ θ=
∴ The polar form is z=sec(cos+isin).
Case2:
⇒
⇒
⇒
⇒
Since sec is negative in the interval .
⇒
⇒
⇒
Since tan is negative in the interval .
⇒ .(∵ θ lies in 4th quadrant)
⇒ z=-sec(cos()+isin())
⇒ z=-sec(-cos-isin)
⇒ z=sec(cos+isin)
∴ The polar form is z=sec(cos+isin)
Express the following complex numbers in the form
tan α – i
Given Complex number is tan-i
We know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
We know that tanα is a periodic function with period .
We have lying in the interval
Case1:
⇒
⇒
⇒
⇒
Since sec is positive in the interval
⇒
⇒
⇒
Since cot is positive in the interval
⇒ (∵ θ lies in 4th quadrant)
⇒
⇒ z=sec(sin-icos)
∴ The polar form is z=sec(sin-icos)
Case2:
⇒
⇒
⇒
⇒
Since sec is negative in the interval .
⇒
⇒
⇒
Since cot is negative in the interval .
⇒ . (∵ θ lies in3rd quadrant)
⇒
⇒ z=-sec(-sin+icos)
⇒ z=sec(sin-icos)
∴ The polar form is z=sec(sin-icos).
Express the following complex numbers in the form
1 – sin α + i cos α
Given Complex number is z=1-sin+icos
We know that sin2θ+cos2θ=1, sin2θ=2sinθcosθ, cos2θ=cos2θ-sin2θ.
⇒
⇒
e know that the polar form of a complex number Z=x+iy is given by Z=|Z|(cosθ+isinθ)
Where,
|Z|=modulus of complex number=
θ =arg(z)=argument of complex number=
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
We know that sine and cosine functions are periodic with period 2
Here We have 3 intervals as follows:
(i)
(ii)
(iii)
Case(i):
In the interval , and also
so,
⇒
⇒
⇒
⇒ .(∵ θ lies in 1st quadrant)
∴ The polar form is .
Case(ii):
In the interval , and also
so,
⇒
⇒
⇒
⇒
⇒ . (∵ θ lies in 4th quadrant)
⇒
∴ The polar form is .
Case(iii):
In the interval , and also
so,
⇒
⇒
⇒
⇒
⇒ .(since θ presents in first quadrant and tan’s period is )
⇒ .
∴ The polar form is .
Express the following complex numbers in the form
Given complex number is
⇒
⇒
⇒
⇒
We know that i2=-1
⇒
⇒
⇒
We know that the polar form of a complex number Z=x + iy is given by Z=|Z|(cos θ+ i sin θ)
Where,
|Z|=modulus of complex number
θ = arg(z)=argument of complex number
Now for the given problem,
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒
Since x<0,y<0 complex number lies in 3rd quadrant and the value of θ will be as follows -1800≤θ≤-900.
⇒
⇒ .
⇒
⇒
∴ The Polar form of is .
If z1 and z2 are two complex number such that |z1| = |z2| and arg (z1) + arg (z2) = π, then show that
Given:
⇒ |z1|=|z2| and arg(z1)+arg(z2)=
Let us assume arg(z1)=θ
⇒ arg(z2)=-θ
We know that z=|z|(cosθ+isinθ)
⇒ z1=|z1|(cosθ+isinθ)-----------------(1)
⇒ z2=|z2|(cos(-θ)+isin(-θ))
⇒ z2=|z2|(-cosθ+isinθ)
⇒ z2=-|z2|(cosθ-isinθ)
Now we find the conjugate of z2
⇒ =-|z2|(cosθ+isinθ) (∵ )
Now,
⇒
⇒ (∵ |z1|=|z2|)
⇒ z1=-
∴ Thus proved.
If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, prove that
Given:
⇒
⇒
We know that
⇒
⇒
⇒
We know that arg(z)+arg()=0
⇒
⇒
∴ Thus proved.
Express in polar form.
Given Complex number is
We know that sin2θ=2sinθcosθ and 1-cos2θ=2sin2θ
⇒
⇒
∴ The Polar form of is .
Write the value of the square root of i.
Let ……………….1
Squaring both sides, we get
i2 = (a2-b2) +2aib
By comparing real and imaginary term, we get
2ab = 1 and a2-b2 = 0
By solving these we get
By putting value of a and b in 1, we get
Write the values of the square root of –i.
Squaring both side
-i = (x + iy)2
= (x2-y2)+2ixy
x2-y2 = 0
2xy = -1
As we know all that,
(x2+y2)2 = (x2-y2)2+4x2y2
(x2+y2)2 = 0+1
(x2+y2)2 = 1
x2+y2 = 1
X2-y2 = 0 ……………………. (1)
x2+y2 = 1 ……………….(2)
From (1)
x2 = y2…………….(3)
2x2 = 1 (because x2 = y2)
2xy = -1
it means xy<0
Either x<0 , y > 0
Or x>0, y<0
X and y have different sign
If then write the value of (x2 + y2)2.
By squaring both sides, we get
On comparing real and imaginary parts, we get
We know that,
If π< θ < 2π and z = 1 + cos θ + i sin θ, then write the value of |z|.
As we all know that,
z = 1 + cos θ + i sin θ
a = (1+cosθ) and b = sin θ
π< θ < 2π it means z lies in second quadrant
z = -θ
If n is any positive integer, write the value of
Explanation
As we know that i2 = -1, i3 = -i , i4 = 1
= i
Write the value of
Explanation
= -2
Write 1 – i in polar form.
Z = 1-i = a+ib
So, a = 1 , b = -1
tan α a>0 , b<1
∴z lies in forth quadrant
arg (z) = θ
Required polar form
=
Write -1 + i√3 in polar form.
So, a = 1 , b = -1
tan α a<0 , b>1
∴z lies in second quadrant
Required polar form
=
Write the argument of –i.
So, a = 0 , b = -1
a = 0 , b = -1
∴z lies in forth quadrant
arg(z) = θ
Write the least positive integral value of n for which is real.
= in
As we know that i2 = -1
And value of n is real number so,
n = 2
Find the principal argument of
As we know that, z = a+ib
= 1+i2+2i√3
= 1-3+2i√3
= -2+2i√3
a = -2 b = 2√3
= |√3|
α<0 , b>1
∴z lies in second quadrant
arg(z) = θ
Find z, if |z| = 4 and
r = |z| = 4 ,
z = r(cos θ + i sin θ)
z = -2√3+2i
If |z – 5i| = |z + 5i|, then find the locus of z.
z = a + ib
|a+ib-5i| = |a+ib+5i|
|a+ib-5i|2 = |a+ib+5i|2
|a +i(b-5)|2 = |a + i(b+5)|2
a2+(b-5)2 = a2+(b+5)2
a2+b2+25-10b = a2+b2+25+10b
20b = 0
b = 0
b is a imaginary part of z
= y
= 0
Im (z) = 0
So, the locus point is real axis
If find the value of x2 + y2.
Comparing real and imaginary part, we get
So, X2+Y2
Write the value of
= 5i×3i
= 15i2
= -15
Write the sum of the series i + i2 + i3 + …. Upto 1000 terms.
0
Explanation
Here,
= i
n = 1000 terms
= 0
Write the value of
As we all know that,
z = r(cos θ + i sin θ ) , θ = arg(z)
= r(cos(-θ)+sin(-θ)
So,
= 0
If |z + 4| ≤ 3, then find the greatest and least values of |z + 1|.
6 and 0
Explanation
As we all know that,
|z1 +z2 |≤|z1 |+|z2 | and |z1 +z2 |≥|z1 |-|z2 |
Suppose,
Z1 = z+4
Z2 = -3
| z1|-| z2|≤| z1+ z2|≤ | z1|+| z2|
|z+4|-|-3|≤|z+4-3|≤ |z+4|+|-3|
|z+4|-3≤|z+1|≤ |z+4|+3
3-3≤|z+1|≤ 3+3 (Given-|z + 4| ≤ 3)
0≤|z+1|≤ 6
for any two complex numbers z1 and z2 and any two real numbers a, b find the value of |az1 – bz2|2 + |az2 + bz1|2.
|az1-bz2|2 + |az2+bz1|2
= | z1|2 (a2+b2 )+| z2|2 (a2+b2 )
= (a2+b2 )(| z1|2+| z2|2)
Write the conjugate of.
If n ∈ N, then find the value of in + in + 1 + in + 2 + in + 3.
As we know that,
i = √(-1 ), i2 = -1, i3 = -i, i4 = 1
z = in + in+1 + in+2 + in+3
= in (1+i1+i2+i3 )
= in (1+i-1-i)
= in(0)
= 0
Find the real value of a for which 3i3 – 3ai2 + (1 – a) i + 5 is real.
a = 2
Explanation
Z is a purely real, it means Im (z) = 0
Z = 3i3-3ai2+ (1-a) i+5
= -3i+3a+ (1-a) i+5
= (3a+5)+i(-3+1-a)
= (3a+5)+i(-2-a)
Re(z) = 3a+5 , Im(z) = (-2-a)
Z is a real so, Im (z) = 0
-2-a = 0
a = -2
If |z| = 2 and find z.
r = |z| = 2 ,
z = r(cos θ + i sin θ)
z = √2 (1+i)
Write the argument of
As we know that,
arg (z1z2) = arg(z1)+arg(z2) so,
arg (z1z2z3) = arg(z1)+arg(z2)+arg(z3)
arg((1+√3 i)(1+i)(cos θ+ i sin θ)
= arg(1+√3 i)+arg(1+i)+arg(cos θ + i sin θ).......... (1)
∴arg(z1 ) = θ
z2 = arg(1+i)
z3 = arg(cos θ + i sin θ)
⇒1(cos θ + i sin θ)
arg(z3 ) = θ
∵ In r(cos θ + i sin θ) , arg(z) = θ
By putting the value of all arg in 1, we get
Mark the Correct alternative in the following:
The value of (1 + i) (1 + i2) (1 + i3)(1 + i4) is
A. 2
B. 0
C. 1
D. i
We know that
i= √(-1)
i2= i × i
= -1
(1+i)(1+i2)(1+i3)(1+i4) = (1+i)(1+(-1))(1+i3)(1+i4)
= (1+i)(0)(1+i3)(1+i4)
= 0
Mark the Correct alternative in the following:
If is a real number and 0 < θ < 2π, then θ =
A. π
B. π/2
C. π/3
D. π/6
For real number, imaginary part should be 0
⇒ 8 sin θ = 0
⇒ θ = n π
As θ belongs to (0,2π) so θ = π
Mark the Correct alternative in the following:
If (1 + i) (1 + 2i) (1 + 3i) …. (1 + n i) = a + i b, then 2 × 5 × 10 × … × (1 + n2) is equal to
A.
B.
C. a2 + b2
D. a2 – b2
E. a + b
Given that (1 + i) (1 + 2i) (1 + 3i) …. (1 + n i) = a + i b …(1)
We can also say that
(1 - i) (1 - 2i) (1 - 3i) …. (1 - n i) = a - i b …(2)
Multiply and divide the eq no. 2 with eq no. 1
((1)2 – (i)2)((1)2 – (2i)2)……((1)2 – (ni)2) = ((a)2 – (ib)2)
2 × 5 × 10 × …… × (1 + n2) = a2 + b2
Mark the Correct alternative in the following:
If then possible value of is
A. B.
C. x + i y D. x – i y
E.
Square both sides
a + ib = (x + iy)2 = x2 + i2xy -y2
So, we can say that a = x2 – y2 and b = 2xy
a – ib = (x2 – y2) – i(2xy)
= (x)2 + 2(x)(-iy) + (-iy)2
= (x + (-iy))2
= (x – iy)2
Mark the Correct alternative in the following:
If then
A.
B.
C.
D.
Mark the Correct alternative in the following:
The polar form of (i25)3 is
A.
B.
C.
D.
z = (i25)3 = i75 = i4×18+3
We know that i4 =1 and i3 = -i
z = i4×18.i3 = 0 – i
z = |z|(cos θ + i sin θ)
Mark the Correct alternative in the following:
If i2 = - 1, then the sum i + i2 + i3 + …. upto 1000 terms is equal to
A. 1
B. -1
C. i
D. 0
We know that
i4n+1 = i
i4n+2 = i2 = -1
i4n+3 = i3 = -i
i4n+4 = i4 = 1
i4n+1 + i4n+2 + i4n+3 + i4n+4 = i + (-1) + (-i) + 1
= 0
S = i + i2 + i3 + …… upto 1000 terms
We can make the pair of 4 terms because we know that value is repeat after every 4th terms. So, there are total 250 pairs are made and each pair have value equal to 0.
S = 0
Mark the Correct alternative in the following:
If then the value of arg(z) is
A. π
B.
C.
D.
Mark the Correct alternative in the following:
If a = cos θ + i sin θ, then
A.
B.
C.
D.
Mark the Correct alternative in the following:
If (1 + i) (1 + 2i) (1 + 3i) … (1 + ni) = a + i b, then 2 . 5. 10 . 17 ……..(1 + n2) =
A. a – ib
B. a2 – b2
C. a2 + b2
D. None of these
Given that (1 + i) (1 + 2i) (1 + 3i) …. (1 + n i) = a + i b …(1)
We can also say that
(1 - i) (1 - 2i) (1 - 3i) …. (1 - n i) = a - i b …(2)
Multiply and divide the eq no. 2 with eq no. 1
((1)2 – (i)2)((1)2 – (2i)2)……((1)2 – (ni)2) = ((a)2 – (ib)2)
2 × 5 × 10 × …… × (1 + n2) = a2 + b2
Mark the Correct alternative in the following:
If then x2 + y2 is equal to
A.
B.
C.
D. None of these
Mark the Correct alternative in the following:
The principal value of the amplitude of
(1 + i) is
A.
B.
C.
D. π
We know that the principal value of amplitude is value of argument lie between (-π,π]
arg(z) = tan-1(1)
So, is called the principal value of the amplitude of (1 + i) because it lies between (-π,π]
Mark the Correct alternative in the following:
The least positive integer n such that is a positive integer, is
A. 16
B. 8
C. 4
D. 2
Let check the value of (1 + i)n for different value of n
at n =1 , 1+ i (no)
at n =2 , (1 + i)2 = 1 + i2 + 2i = 2i (no)
at n =3 , (1 + i)2(1 + i) = (1 + i)(2i) = 2i – 2 (no)
at n =4 , (1 + i)2(1 + i)2 = (2i)2 = -4 (no)
at n =5 , (1 + i)4(1 + i) = -4(1 + i) (no)
at n =6 , (1 + i)4(1 + i)2 = -4(2i) (no)
at n =7 , (1 + i)6(1 + i) = -8i(1 + i) = -8i + 8 (no)
at n =8 , (1 + i)4(1 + i)4 = (-4)(-4) = 8 (yes)
So, we can say that n = 8 is the least positive integer for which is positive integer.
Mark the Correct alternative in the following:
If z is a non-zero complex number, then is equal to
A.
B. |z|
C.
D. None of these
Let, z = reiθ
=1
Solve option A
=|e-iθ |
=1
Mark the Correct alternative in the following:
If a = 1 + i, then a2 equals
A. 1 – i
B. 2i
C. (1 + i) (1 – i)
D. i – 1.
a2 = (1 + i)(1 + i)
= 12 + 2i + i2
= 1 – 1 + 2i
= 2i
Mark the Correct alternative in the following:
If (x + iy)1/3 = a + ib, then
A. 0
B. 1
C. -1
D. None of these
(x + iy)1/3 = a + ib
x + iy = (a + ib)3
= a3 + (ib)3 + 3a2(ib) + 3a(ib)2
= a3 – ib3 + i3a2b – 3ab2
= (a3 – 3ab2) + i(3a2b – b3)
x = a3 – 3ab2 and y = 3a2b – b3
= a2 – 3b2 + 3a2 – b2
= 4(a2 – b2)
Mark the Correct alternative in the following:
is equal to
A.
B.
C.
D. None of these
√-2= √2 i and √-3= √3 i
= i2 √6
= -√6
Mark the Correct alternative in the following:
The argument of is
A. 60o
B. 120o
C. 210o
D. 240o
=60⁰
But answer is going in 3rd quadrant because tan θ is positive but sin θ and cos θ both are negative and it is possible only in 3rd quadrant.
So, answer is π + 60⁰ = 180⁰
Mark the Correct alternative in the following:
If then z4 equals
A. 1
B. -1
C. 0
D. None of these
=i
z4= i4
=1
Mark the Correct alternative in the following:
If then arg(z) equals
A. 0
B.
C. π
D. None of these
=1+i0
=0
Mark the Correct alternative in the following:
If s then |z| =
A.
B.
C.
D. None of these
Mark the Correct alternative in the following:
If then |z| =
A. 1
B.
C.
D. None of these
Mark the Correct alternative in the following:
If z = 1 – cos θ + i sin θ, then |z| =
A.
B.
C.
D.
Mark the Correct alternative in the following:
If x + i y = (1 + i) (1 + 2 i) (1 + 3i), then x2 + y2 =
A. 0
B. 1
C. 100
D. None of these
Given that (1 + i) (1 + 2i) (1 + 3i) = x + i y …(1)
We can also say that
(1 - i) (1 - 2i) (1 - 3i) = x - i y …(2)
Multiply and divide the eq no. 2 with eq no. 1
((1)2 – (i)2)((1)2 – (2i)2)((1)2 – (3i)2) = ((x)2 – (iy)2)
x2 + y2 = 2 × 5 × 10 = 100
Mark the Correct alternative in the following:
If then Re (z) =
A. 0
B.
C.
D.
Mark the Correct alternative in the following:
If then y =
A. 9/85
B. -9/85
C. 53/85
D. None of these
Mark the Correct alternative in the following:
If then a2 + b2 =
A. 1
B. -1
C. 0
D. None of these
=1
Mark the Correct alternative in the following:
If θ is the amplitude of then tan θ =
A.
B.
C.
D. None Of these
Mark the Correct alternative in the following:
If then
A. |z| = 2
B.
C.
D.
= √2
Mark the Correct alternative in the following:
The amplitude of is equal to
A. 0
B.
C.
D. π
=0+i(-1)
Mark the Correct alternative in the following:
The argument of is
A.
B.
C.
D.
=0+i(-1)
Mark the Correct alternative in the following:
The amplitude of is
A.
B.
C.
D.
Mark the Correct alternative in the following:
The value of (i5 + i6 + i7 + i8 + i9)/(1 + i) is
A.
B.
C. 1
D.
We know that
i4n+1 = i
i4n+2 = i2 = -1
i4n+3 = i3 = -i
i4n+4 = i4 = 1
i5 + i6 + i7 + i8 + i9 = i + (-1) + (-i) + 1 + i
= i
Mark the Correct alternative in the following:
equals
A. i
B. -1
C. -i
D. 4
= -i
Mark the Correct alternative in the following:
The value of is
A. -1
B. -2
C. -3
D. -4
We know that
i4n+1 = i
i4n+2 = i2
= -1
i4n+3 = i3
= -i
i4n+4 = i4
= 1
i592 = i4(147)+4
= 1
i582 = i4(145)+2
= -1
i590 = i4(147)+2
= -1
i580 = i4(144)+4
= 1
i588 = i4(146)+4
= 1
i578 = i4(144)+2
= -1
i586 = i4(146)+2
= -1
i576 = i4(143)+4
= 1
i584 = i4(145)+4
= 1
i574 = i4(143)+2
= -1
= -2
Mark the Correct alternative in the following:
The value of (1 + i)4 + (1 – i)4 is
A. 8
B. 4
C. -8
D. -4
(1 + i)4 + (1 - i)4 = ((1 + i)2)2 + ((1 - i)2)2
= (2i)2 + (-2i)2
= -4 + -4
= -8
Mark the Correct alternative in the following:
If z = a + ib lies in third quadrant, then also lies in the third quadrant if
A. a > b > 0
B. a < b < 0
C. b < a < 0
D. b > a > 0
If z = a + ib lies in third quadrant then a and b both are less than zero
a2 – b2 < 0 and ab > 0 because a2 + b2 is always greater than zero
(a – b)(a + b) < 0
Here a and b both are less than zero that means (a + b) is always less than zero
So, a – b > 0 ⇒ a > b
Then, final answer is b < a < 0
Mark the Correct alternative in the following:
If where z = 1 + 2i, then |f(z)| is
A.
B. |z|
C. 2|z|
D. None of these
Mark the Correct alternative in the following:
A real value of x satisfies the equation if a2 + b2 =
A. 1
B. -1
C. 2
D. -2
=1
Mark the Correct alternative in the following:
The complex number z which satisfies the condition lies on
A. circle x2 + y2 = 1
B. the x-axis
C. the y-axis
D. the line x + y = 1
Let, z = x + iy
x4+y4+1+2x2 y2+2x2-2y2= x4+y4+1+2x2 y2+2x2+
6y2-4y3-2xy(x+y)-4y
8y2 – 4y3 – 2xy(x + y) – 4y = 0
y(8y – 4y2 – 2x(x + y) – 4) = 0
y = 0 and 8y – 4y2 – 2x(x + y) – 4 = 0
So, by y = 0 we can say that it lies on x axis
Mark the Correct alternative in the following:
If z is a complex number, then
A. |z|2 > ||2
B. |z|2 = ||2
C. |z|2 < ||2
D. |z|2 ≥ ||2
Let, z = a + ib
|z|2 = a2 + b2
Mark the Correct alternative in the following:
Which of the following is correct for any two complex numbers z1 and z2?
A. |z1 z2| = |z1| |z2|
B. arg(z1 z2) = arg(z1) arg (z2)
C. |z1 + z2| = |z1| + |z2|
D. |z1 + z2| ≥ |z1| + |z2|
Let, z1= r1eiα and z2 = r2eiβ
|z1| = r1 and |z2| = r2
Option A
z1z2 = r1r2ei(α+β)
|z1z2| = r1r2 = |z1| |z2|
Option A correct
Option B
arg(z1z2) = α + β
= arg(z1) + arg(z2)
Option B not correct
Let, z1 = a+ ib and z2 = c + id
Option C
z1 + z2 = (a+c) + i(b+d)
We cannot say anything about option c and option d
Mark the Correct alternative in the following:
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on
A. x-axis
B. circle with centre (-1, 0) and radius 1
C. y-axis
D. None of these
|z + 1| = 1
|x + iy + 1| = 1
|(1 + x) + iy| = 1
(x + 1)2 + y2 = 1
(x – (-1))2 + (y – 0)2 = (1)2
So, we can say that it is a circle with centre (-1,0) and radius 1