To prove:
As equation on RHS is a simplified expression, so we must opt Left side equation and simplify it further so that we can get
LHS = RHS.
And thus we will be able to prove it.
∵ LHS =
The expression gives us hint that we ca use the identity:
sin2A + cos2A = 1 to simplify the expression but to use this we need to multiply numerator and denominator with
sin A + (1 – cos A).
∴ LHS =
Hence, it is proved that:
If then prove that is also equal to y.
As we have to prove:
Given,
y =
As we need to get (1 – cos α + sin α) in numerator, so we need to bring this term in numerator.
∴ Multiplying numerator and denominator by
(1 – cos α + sin α),we get -
using (a + b) (a-b) = a2 – b2, we get:
∵ 1 – cos2α = sin2 α
Thus,
Which of the following is not correct?
A.
B. cos θ = 1
C.
D. tan θ = 20
We know that,
a) is correct since Sin θ ∈ [-1,1]
b) cos θ = 1 is correct since Cos θ ∈ [-1,1]
c)
⇒cos θ=2 is incorrect since Cos θ ∈ [-1,1]
d) tan θ = 20 is correct since tan θ ∈ R.
e)
If m sin θ = n sin (θ + 2α), then prove that
tan (θ + α) cot α =
[Hints: Express and apply componendo and dividend]
Given,
m sin θ = n sin (θ + 2α)
To prove: tan (θ + α)cot α =
∵ m sin θ = n sin (θ + 2α)
⇒
Applying componendo-dividendo rule –
⇒
By transformation formula of T-ratios we know that –
sin A + sin B =
and sin A – sin B =
∴ On applying formula, we get –
⇒
⇒ {∵ tan x = (sin x)/(cos x)}
∴ tan (θ + α) cot α =
If where α lie between 0 and π/4, find value of tan 2α
[Hint: Express tan 2α as tan (α + β + α – β]
Given that,
cos(α + β) = 4/5 …(1)
we know that: sin x = √(1 – cos2x)
∴ sin (α + β) = √(1 – cos2(α + β))
⇒ sin (α + β) = …(2)
Also,
sin(α - β) = 5/13 {given} …(3)
we know that: cos x = √(1 – sin2x)
∴ cos (α - β) = √(1 – sin2(α - β))
⇒ cos (α - β) = …(4)
∵ tan 2α = tan (α + β + α – β)
We know that:
∴ tan 2α =
⇒ tan 2α =
Using equation 1,2,3 and 4 we have –
Hence, tan 2α = 56/33
If then find the value of
Given: tan x = b/a
Let, y =
Prove that
[Hint: Express L.H.S.
To prove:
As equation on RHS is a simplified expression, so we must opt Left side equation and simplify it further so that we can get
LHS = RHS.
And thus we will be able to prove it.
∵ LHS =
By seeing the expression we can think that the problem can be solved using transformation formula:
By transformation formula, we have:
2 cos A cos B = cos(A + B) + cos (A – B)
-2 sin A sin B = cos(A + B) - cos (A – B)
Or cos A – cos B =
But as LHS expression does not contain ‘2’ in its term. So we multiply and divide the expression by 2.
∴ LHS =
Applying transformation formula, we have –
LHS =
⇒ LHS =
⇒ LHS = {∵ cos (-x) = cos x}
⇒ LHS =
Again, applying the transformation formula:
⇒ LHS =
⇒ LHS =
∴ LHS = sin 4θ sin = RHS
Hence:
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, then show that a2 + b2 = m2 + n2.
Given,
a cos θ + b sin θ = m …(1)
a sin θ – b cos θ = n …(2)
Squaring and adding equation 1 and 2, we get –
(a cos θ + b sin θ)2 + (a sin θ – b cos θ)2 = m2 + n2
⇒ a2cos2θ + b2sin2θ + 2ab sin θ cos θ + a2sin2θ + b2cos2θ - 2ab sin θ cos θ = m2 + n2
⇒ a2cos2θ + b2sin2θ + a2sin2θ + b2cos2θ = m2 + n2
⇒ a2(sin2θ + cos2θ) + b2(sin2θ + cos2θ) = m2 + n2
Using: sin2θ + cos2θ = 1, we get –
⇒ a2 + b2 = m2 + n2
Find the value of tan 22°30’.
[Hint: Let θ = 45°, use
Let, θ = 45°
As we need to find: tan 22°30’ = tan (θ/2)
∵
If somehow, we manage to get sin θ and cos θ in numerator and denominator, our problem will be solved as we know that –
sin θ = cos θ = 1/√2 (for θ = 45°)
As,
Multiplying in numerator and denominator, we get –
⇒
By applying formula of T-ratios of multiple angles-
sin 2x = 2sin x cos x
cos 2x = 2cos2x – 1 or 1 + cos 2x = 2cos2x
∴
⇒ tan 22°30’ =
By rationalizing the term, we get-
⇒ tan 22°30’ =
∴ tan 22°30’ = √2 – 1
Prove that sin 4A = 4sinA cos3A – 4cosA sin3A (corrected question)
∵ sin 4A = sin (2A + 2A)
As we know that-
sin(A + B) = sin A cos B + cos A sin B
∴ sin 4A = sin 2A cos 2A + cos 2A sin 2A
⇒ sin 4A = 2 sin 2A cos 2A
From T-ratios of multiple angle, we know that
sin 2A = 2 sin A cos A and cos 2A = cos2A – sin2A
⇒ sin 4A = 2(2 sin A cos A)(cos2A – sin2A)
⇒ sin 4A = 4 sin A cos3A – 4 cos A sin3A
Hence: sin 4A = 4 sin A cos3A – 4 cos A sin3A
If tan θ + sin θ = m and tan θ – sin θ = n, then prove that
m2 – n2 = 4 sin θ tan θ
[Hint: m + n = 2tanθ, m – n = 2 sin θ, then use m2 – n2 = (m + n)(m – n)]
Given,
tan θ + sin θ = m …(1)
tan θ – sin θ = n …(2)
As we have to prove: m2 – n2 = 4 sin θ tan θ
∴ if we find out the expression of sin θ and tan θ in terms of m and n, we can get the desired expression to be proved.
∴ Adding equation 1 and 2 to get the value of tan θ.
2 tan θ = m + n …(3)
Similarly, on subtracting equation 2 from 1, we get-
2sin θ = m – n …(4)
Multiplying equation 3 and 4 –
2sin θ (2tan θ) = (m + n)(m – n)
⇒ 4 sin θ tan θ = m2 – n2
Hence,
m2 – n2 = 4 sin θ tan θ
If tan (A + B) = p, tan (A – B) = q, then show that .
[Hint: Use 2A = (A + B) + (A – B)]
To prove:
∵ tan 2A = tan (A + B + A – B)
We know that:
∴ tan 2A =
⇒ tan 2A = {according to values given in question}
Hence, tan 2A =
If cosα + cosβ = 0 = sinα + sinβ, then prove that cos 2α + cos 2β = –2cos (α + β).
[Hint: cosα + cosβ)2 – (sinα + sinβ)2 = 0]
To Prove: cos 2α + cos 2β = –2cos (α + β)
Given,
cosα + cosβ = 0 = sinα + sinβ …(1)
∵ LHS = cos 2α + cos 2β
We know that: cos 2x = cos2x – sin2x
∴ LHS = cos2α – sin2α + (cos2β – sin2β)
⇒ LHS = cos2α + cos2β – (sin2α + sin2β)
∵ a2 + b2 = (a+b)2 – 2ab
⇒ LHS = (cosα + cosβ)2 – 2cosα cosβ –(sinα + sinβ)2 +2sinα sinβ
⇒ LHS = 0 - 2cosα cosβ -0 + 2sinα sinβ {using equation 1}
⇒ LHS = -2(cosα cosβ – sinα sinβ)
∵ cos (α + β) = cosα cosβ – sinα sinβ
∴ LHS = -2 cos (α + β) = RHS
Hence, cos 2α + cos 2β = –2cos (α + β)
If then show that
[Hint: Use componendo and Dividendo]
To prove:
Given,
∵ sin(A+B) = sin A cos B + cos A sin B
∴
⇒
Applying componendo-dividendo rule, we get –
⇒
⇒
⇒
⇒ {∵ tan A = (sinA)/(cosA)}
⇒
If then show that sinα + cosα = √2 cos θ.
[Hint: Express tanθ = tan(α – π/2) θ = α – π/4]
Given,
To prove: sinα + cosα = √2 cos θ
∵
⇒
⇒ {∵ tan A = (sinA)/(cosA)}
⇒ {∵ tan π/4 = 1}
We know that: tan(x-y) =
∴
⇒ θ = α - π/4
⇒ α = θ + π/4 …(1)
As we have to prove - sinα + cosα = √2 cos θ
∵ LHS = sinα + cosα
⇒ LHS = sin(θ + π/4) + cos(θ + π/4) {using equation 1}
∵ sin(x + y) = sin x cos y + cos x sin y
And, cos(x + y) = cos x cos y – sin x sin y
∴ LHS = sin θ cos(π/4) + sin(π/4)cos θ + cos θ cos(π/4) - sin(π/4)sin θ
∵ sin(π/4)=cos(π/4) = 1/√2
⇒ LHS =
⇒ LHS =
⇒ LHS = √2 cos θ = RHS
Hence, sinα + cosα = √2 cos θ
If sin θ + cos θ = 1, then find the general value of θ.
Given,
sin θ + cos θ = 1
We need to solve the above equation.
If we can convert this to a single trigonometric ratio, we can easily give its solution by using the formula.
∵ sin θ + cos θ = 1
⇒
⇒ {∵ sin(π/4)=cos(π/4) = 1/√2}
We know that: sin(A+B) = sinAcosB + cosAsinB
⇒
⇒
Formula to be used: If sin θ = sinα ⇒ θ = nπ + (-1)nα
∴ θ + π/4 = nπ + (-1)n(π/4)
⇒ θ = nπ + (π/4)((-1)n – 1)
Find the most general value of θ satisfying the equation tan θ = –1 and
As we need to find the most general solution for two different trigonometric equations.
Tan θ = -1 …(1)
and cos θ = 1/√2 …(2)
Most general value of θ is the common solution of both equation 1 and 2.
Let S1 represents the solution set of equation 1 and S2 be the solution set equation 2.
Let S represents the set of most general value of θ
∴ S = S1 ∩ S2
We know that, solution of tan x = tan α is given by –
x = nπ + α ∀ n ∈ Z
and solution of cos x = cos α is given by
x = 2mπ ± α ∀ m ∈ Z
From equation 1,we have –
tan θ = -1
⇒ tan θ = tan (-π/4)
∴ θ = nπ + (-π/4) = (nπ - π/4) ∀ n ∈ Z …(3)
From equation 2 we have -
cos θ = 1/√2
⇒ cos θ = cos π/4
⇒ θ = 2mπ ± π/4 ∀ m ∈ Z …(4)
From equation 3 we can infer that, solution lies either in 2nd quadrant (when n is odd) and 4th quadrant (when n is even)
From equation 3 we can infer that, solution lies either in 1st or 2nd quadrant irrespective of value of m.
∴ region of common solution is 4th quadrant and n is even in that case.
∴ common solution is given by-
θ = 2mπ - π/4 ∀ m ∈ Z.
The above solution is the most general solution for the given equations.
If cos θ + tan θ = 2 cosec θ, then find the general value of θ.
Correct question: cot θ + tan θ = 2cosecθ
Given,
⇒
⇒ {∵ sin2θ + cos2θ = 1}
⇒ 1 = 2 cosec θ sin θ cos θ
⇒ 1 = 2 cos θ {∵ sin θ cosec θ = 1}
⇒ cos θ = 1/2 = cos(π/3)
∵ solution of cos x = cos α is given by
x = 2mπ ± α ∀ m ∈ Z
⇒ θ = 2nπ ± π/3, n ∈ Z
If 2sin2θ = 3cos θ, where 0 ≤ θ ≤ 2π, then find the value of θ
Given,
2sin2θ = 3cos θ
We know that – sin2θ = 1 – cos2θ
∴ 2(1 – cos2θ) = 3cos θ
⇒ 2 – 2cos2θ = 3cos θ
⇒ 2cos2θ + 3cos θ - 2 = 0
⇒ 2cos2θ + 4cos θ - cos θ - 2 = 0
⇒ 2cos θ (cos θ+ 2) +1 (cos θ + 2) = 0
⇒ (2cos θ + 1)(cos θ + 2) = 0
∵ cos θ ∈ [-1,1] , for any value θ.
So, cos θ ≠ - 2
∴ 2 cos θ - 1 = 0
⇒ cos θ = 1/2
If sec x cos 5x + 1 = 0, where 0 < x ≤ π/2, then find the value of x.
Given,
sec x cos 5x = -1
⇒ cos 5x = -1/sec x
⇒ cos 5x + cos x = 0 {∵ sec x = 1/cos x}
By transformation formula of T-ratios we know that –
cos A + cos B =
⇒
⇒ 2 cos 3x cos 2x = 0
⇒ cos 3x = 0 or cos 2x = 0
∵ 0 < x ≤ π/2
∴ 0< 2x ≤ π or 0< 3x ≤ 3π/2
∴ 2x = π/2
⇒ x = π/4
3x = π/2
⇒ x = π/6
Or 3x = 3π/2
⇒ x = π/2
Hence, x = π/6, π/4.
If sin (θ + α) = a and sin (θ + β) = b, then prove that cos 2(α – β) – 4ab cos (α – β) = 1 – 2a2 – 2b2
Given,
sin (θ + α) = a and sin(θ + β) = b
To prove: cos 2(α – β) – 4ab cos (α – β) = 1 – 2a2 – 2b2
As, LHS = cos 2(α – β) – 4ab cos (α – β)
Using: cos 2x = 2cos2x – 1
⇒ LHS = 2cos2(α – β) - 1 – 4ab cos(α – β)
⇒ LHS = 2cos (α – β) {cos (α – β) – 2ab} - 1
It involves cos (α – β) terms so we need to calculate it first.
∵ cos (α – β) = cos {(θ + α) – (θ + β)}
cos (A – B) = cos A cos B + sin A sin B
⇒ cos (α – β) = cos(θ + α)cos(θ + β) + sin(θ + α)sin(θ + β)
∵ sin(θ + α) = a
⇒ cos(θ + α) = √(1 – sin2(θ + α) = √(1 – a2)
Similarly, cos(θ + β) = √(1 – b2)
∴ cos(α – β) = √(1-a2)√(1-b2) + ab
∴ LHS = 2{ab + √(1 – a2)(1 – b2)}{ab + √(1 – a2)(1 – b2) -2ab} - 1
⇒ LHS = 2{√(1 – a2)(1 – b2) + ab}{√(1 – a2)(1 – b2) - ab}-1
Using: (x + y)(x – y) = x2 – y2
⇒ LHS = 2{(1-a2)(1-b2) – a2b2} – 1
⇒ LHS = 2{1 – a2 – b2 + a2b2} – 1
⇒ LHS = 2 – 2a2 – 2b2 – 1
⇒ LHS = 1 – 2a2 – 2b2 = RHS
Thus,
cos 2(α – β) – 4ab cos (α – β) = 1 – 2a2 – 2b2
If cos (θ + ϕ) = m cos (θ – ϕ), then prove that
[Hint: Express and apply Componendo and Dividendo]
Correction required: prove that:
Given,
cos (θ + ϕ) = m cos (θ – ϕ)
To prove:
∵ cos (θ + ϕ) = m cos (θ – ϕ)
⇒
Applying componendo – dividend, we get
⇒
From transformation formula, we know that –
cos(A+B) + cos(A – B) = 2cosAcosB
cos(A – B) – cos(A + B) = 2sinA sinB
⇒
⇒ {∵ (cos θ)/(sin θ) = cot θ }
⇒
⇒
Find the value of the expression
Let, y =
We know that-
sin(3π/2 – α) = -cos α
sin(3π + α) = -sin α
sin(π/2 + α) = cos α
sin(5π – α) = sin α
∴ y =
⇒ y = 3 [cos4α + sin4α] – 2[sin6α + cos6α]
⇒ y = 3[(sin2α + cos2α)2 – 2sin2α cos2α] – 2[(sin2α)3 + (cos2α)3]
∵ sin2α + cos2α = 1
⇒ y = 3[1 – 2sin2α cos2α] – 2[(sin2α + cos2α)( cos4α + sin4α- sin2α cos2α)] {∵ a3+b3 = (a+b)(a2 – ab + b2)}
⇒ y = 3[1 – 2sin2α cos2α] – 2[cos4α + sin4α- sin2α cos2α]
⇒ y = 3[1 – 2sin2α cos2α] – 2[(sin2α + cos2α)2 – 2sin2α cos2α - sin2α cos2α]
⇒ y = 3[1 – 2sin2α cos2α] – 2[1 – 3sin2α cos2α]
⇒ y = 3 – 6sin2α cos2α – 2 + 6 sin2α cos2α
⇒ y = 1
If a cos2θ + b sin 2θ = c has α and β as its roots, then prove that
[Hint: Use the identities and ]
Given,
a cos2θ + b sin 2θ = c and α and β are the roots of the equation.
Using the formula of multiple angles, we know that –
and
∴
⇒ a(1 – tan2θ) + 2b tan θ - c(1 + tan2θ) = 0
⇒ (-c – a)tan2θ + 2b tan θ - c + a = 0 …(1)
Clearly it is a quadratic equation in tan θ and as α and β are its solutions.
∴ tan α and tan β are the roots of this quadratic equation.
We know that sum of roots of a quadratic equation:
ax2 + bx + c = 0 is given by (-b/a)
∴ tan α + tan β =
Hence,
If x = sec ϕ – tan ϕ and y = cosec ϕ + cot ϕ, then show that xy + x – y + 1 = 0.
[Hint: Find xy + 1 and then show tan x – y = –(xy + 1)]
Given,
x = sec ϕ – tan ϕ and y = cosec ϕ + cot ϕ
To prove: xy + x – y + 1 = 0
∵ LHS = xy + x – y + 1
{∵ sin2θ + cos2θ = 1}
Thus, LHS = xy + x – y + 1 = 0
If θ lies in the first quadrant and then find the value of cos(30° + θ) + cos (45° – θ) + cos (120° – θ)
Given,
cos θ = 8/17
∴ sin θ = ±√(1 – cos2θ)
But θ lies in first quadrant, so only positive sign is considered.
⇒ sin θ = √( 1 – 64/289) = 15/17
Let, y = cos(30° + θ) + cos (45° – θ) + cos (120° – θ)
We know that: cos(x + y) = cos x cos y – sin x sin y
∴ y = cos30° cos θ – sin30° sin θ + cos45° cos θ + sin45°sin θ +cos120° cos θ + sin120° sin θ
Putting values of cos30° ,sin30° ,cos 120° ,sin120° and cos 45°
Find the value of the expression
[Hint: Simplify the expression to =
Let, y =
=
∵ cos (π – x) = - cos x
Find the general solution of the equation
5cos2θ + 7sin2θ – 6 = 0
Given,
5cos2θ + 7sin2θ – 6 = 0
We know that : sin2θ = 1 – cos2θ
∴ 5cos2θ + 7(1 – cos2θ) – 6 = 0
⇒ 5cos2θ + 7 – 7cos2θ – 6 = 0
⇒ -2cos2θ + 1 = 0
⇒ cos2θ = 1/2
∴ cos θ = ±1√2
∴ cos θ = cos π/4 or cos θ = cos 3π/4
∵ solution of cos x = cos α is given by
x = 2mπ ± α ∀ m ∈ Z
⇒ θ = nπ ± π/4, n ∈ Z
Find the general solution of the equation sin x – 3sin2x + sin3x = cos x – 3cos2x + cos3x
Given,
sin x – 3sin2x + sin3x = cos x – 3cos2x + cos3x
To solve the problem we need to apply transformation formula, but we need to group sin x and sin 3x together and similarly cos x and cos 3x in RHS side.
∴ sin x + sin3x – 3sin2x = cos x + cos3x – 3cos2x
Transformation formula:
cos A + cos B =
sin A + sin B =
⇒
⇒ 2sin 2x cos x – 3sin 2x = 2cos 2x cos x – 3cos 2x
⇒ 2sin 2x cos x – 3sin 2x - 2cos 2x cos x + 3cos 2x = 0
⇒ 2cos x (sin 2x – cos 2x) -3(sin 2x – cos 2x) = 0
⇒ (sin 2x – cos 2x)(2cos x – 3) = 0
⇒ cos x = 3/2 or sin 2x = cos 2x
As cos x ∈ [-1,1]
∴ no value of x exists for which cos x = 3/2
∴ sin 2x = cos 2x
⇒ tan 2x = 1 = tan π/4
We know solution of tan x = tan α is given by –
x= nπ + α , n ∈ Z
∴ 2x = nπ + (π/4)
⇒
Find the general solution of the equation
[Hint: Put which gives ]
Given equation is:
We need to solve the above equation.
If we can convert this to a single trigonometric ratio, we can easily give its solution by using the formula.
For this,
Let, r sinα = √3 – 1 and r cosα = √3 + 1
∴
And,
Hence, equation can be rewritten as-
∴ r(sinα cos θ + r cosα sin θ) = 2
⇒ 2√2 sin (θ + α) = 2
⇒ sin(θ + α) = 1/√2 = sin π/4
We know that: General solution of trigonometric equation
sin x = sin α is given as –
x = nπ + (-1)nα , n ∈ Z
∴ θ + α = nπ + (-1)n(π/4)
⇒ θ = {nπ + (-1)n(π/4) – α} ,where tan α = and n ∈ Z
If sin θ + cosec θ = 2, then sin2θ + cosec2θ is equal to
A. 1
B.4
C. 2
D. None of these
Given that, sin θ + cosec θ = 2
Squaring both sides, we get
⇒ (sin θ + cosec θ)2 = 22
⇒ sin2θ + cosec2θ + 2 sin θ cosec θ = 4
⇒ sin2θ + cosec2θ + 2 = 4
⇒ sin2θ + cosec2θ = 2
If f(x) = cos2x + sec2x, then
A. f(x) < 1
B. f(x) = 1
C. 2 < f(x) < 1
D. f(x) ≥ 2
[Hint: A.M ≥ G.M.]
We have, f(x) = cos2x + sec2x
We know that, A.M ≥ G.M.
⇒ cos02x + sec2x ≥ 2
⇒ f(x) ≥ 2
If tan θ = 1/2 and tan ϕ = 1/3, then the value of θ + ϕ is
A. π/6
B. π
C. 0
D. π/4
We have,
We know that,
The value of tan 1° tan 2° tan 3°… tan 89° is
A. 0
B. 1
C. 1/2
D. Not defined
tan 1° tan 2° tan 3°… tan 89°
= tan 1° tan 2° … tan 45° tan (90-44°) tan(90-43°)…tan (90-1°)
= tan 1°tan 2° … tan 45°cot 44°cot 43°…cot 1° [∵tan (90-θ)=cot θ]
= tan 1° cot 1° tan 2° cot 2°…tan45°… tan 89° cot 89°
=1.1….1 = 1
The value of is
A. 1
B.
C.
D. 2
Let θ = 15° ⇒ 2θ = 30°
We know that,
The value of cos 1° cos 2° cos 3°… cos 179° is
A.
B. 0
C. 1
D. –1
Since cos90° =0
⇒ cos 1° cos 2° cos 3°… cos90°… cos 179° = 0
If tan θ = 3 and θ lies in third quadrant, then the value of sin θ is
A.
B.
C.
D.
Given that, tan θ = 3 and θ lies in third quadrant
We know that,
Cosec2θ = 1+cot2θ
The value of tan 75°– cot 75° is equal to
A.
B.
C.
D. 1
Given that, tan 75°– cot 75°
= -2cot150°
= -2 cot (180°-30°)
= 2cot30°
=2√3
Which of the following is correct?
A. sin 1°> sin 1
B. sin 1°< sin 1
C. sin 1° = sin 1
D.
[Hint: 1 radian = 180°/π = 57°30’ approx.]
We know that,
57° lies between 0 and 90 degrees and since in first quadrant sin θ increases when θ increases.
⇒ sin 1°< sin 1
If then α + β is equal to
A.
B.
C.
D.
Given that,
Now,
The minimum value of 3 cos x + 4 sin x + 8 is
A. 5
B. 9
C. 7
D. 3
Let y = 3 cos x + 4 sin x + 8
⇒ y-8 = 3 cos x + 4 sin x
We know that, minimum value of A cos θ +Bsin θ = -√(A2+B2)
⇒ y-8 = - √(32+42) = -√25 = -5
⇒ y = -5+8
= 3
The value of tan 3A – tan 2A –tan A is equal to
A. tan 3A tan 2A tan A
B. – tan 3A tan 2A tan A
C. tan A tan 2A – tan 2A tan 3A – tan 3A tan A
D. None of these
tan 3A = tan(2A+A)
⇒ tan 3A(1-tan 2A.tan A) = tan 2A + tan A
⇒ tan 3A-tan 3A.tan 2A.tan A = tan 2A + tan A
⇒ tan 3A- tan 2A - tan A = tan 3A.tan 2A.tan A
The value of sin (45° + θ) – cos (45°–θ) is
A. 2 cos θ
B. 2sin θ
C. 1
D. 0
We have, sin (45° + θ) – cos (45°–θ)
= sin (45° + θ) - sin (90° -(45° - θ))
= sin (45° + θ) - sin (45° + θ)
= 0.
The value of is
A. –1
B. 0
C. 1
D. Not defined
We have,
cos 2θ cos 2ϕ + sin2(θ–ϕ) – sin2(θ + ϕ) is equal to
A. sin 2(θ + ϕ)
B. cos 2(θ + ϕ)
C. sin 2(θ–ϕ)
D. cos 2(θ–ϕ)
[Hint: Use sin2A – sin2B = sin (A + B) sin (A – B)]
Given that, cos 2θ cos 2ϕ + sin2(θ–ϕ) – sin2(θ + ϕ)
= cos 2θ cos 2ϕ + sin(θ–ϕ+ θ + ϕ)sin(θ–ϕ- θ – ϕ)
[∵sin2A – sin2B = sin (A + B) sin (A – B)]
= cos 2θ cos 2ϕ + sin 2θ. sin(- 2ϕ)
= cos 2θ cos 2ϕ - sin 2θ. Sin 2ϕ [∵ sin(-θ) = -sin θ]
= cos 2(θ + ϕ) [∵ cos x cos y – sin x sin y = cos(x + y)]
The value of cos 12° + cos 84° + cos 156° + cos 132° is
A.
B. 1
C.
D.
We have, cos 12° + cos 84° + cos 156° + cos 132°
= (cos 132°+ cos 12°) + (cos 156° + cos 84°)
= 2 cos72°.cos60° + 2 cos120°.cos36°
= cos72° - cos36°
= cos(90° -18°) – cos36°
= sin 18° - cos36°
If then tan (2A + B) is equal to
A. 1
B. 2
C. 3
D. 4
Given that,
We know that.
Now,
=3
The value of is
A.
B.
C.
D. 1
[Hint: Use ]
We have,
=-sin18° sin(90° - 36°)
=-sin18° cos36°
The value of sin 50°– sin 70° + sin 10° is equal to
A. 1
B. 0
C.
D. 2
We have, sin 50°– sin 70° + sin 10°
=2cos60° (-sin10°) + sin10°
=-sin10° + sin10°
= 0
If sin θ + cos θ = 1, then the value of sin 2θ is equal to
A. 1
B.
C. 0
D. –1
Given that, sin θ + cos θ = 1
Squaring both sides, we get
⇒ (sin θ + cos θ)2 = 1
⇒ sin2θ + cos2θ + 2sin θ cos θ = 1
⇒ 1 + sin2θ = 1
⇒ sin2θ = 1-1
= 0
If then the value of (1+ tanα) (1 + tanβ) is
A. 1
B. 2
C. –2
D. Not defined
We have,
⇒ tanα + tanβ = 1- tanα. tanβ
⇒ tanα + tanβ + tanα.tanβ = 1
On adding 1 both sides, we get
⇒1+ tanα + tanβ + tanα. tanβ = 1+1
⇒1(1+ tanα) + tanβ (1 + tanα) = 2
⇒ (1+ tanα) (1 + tanβ) = 2
If and θ lies in third quadrant then the value of is
A.
B.
C.
D.
Given that, and θ lies in third quadrant.
since θ lies in third quadrant
Number of solutions of the equation tan x + sec x = 2 cos x lying in the interval [0, 2π] is
A. 0
B. 1
C. 2
D. 3
We have, tan x + sec x = 2 cos x
⇒ 1+sin x = 2cos2x
⇒ 2cos2x-sin x-1 = 0
⇒ 2(1-sin2x)-sin x-1 = 0
⇒ 2-2sin2x-sin x-1 = 0
⇒ 2sin2x+sin x-1 = 0
Since, the equation is a quadratic equation in sin x, it will have 2 solutions.
The value of is given by
A.
B. 1
C.
D.
Given that,
If A lies in the second quadrant and 3 tan A + 4 = 0, then the value of 2 cot A– 5 cos A + sinA is equal to
A.
B.
C.
D.
We have, 3 tan A + 4 = 0, A lies in second quadrant.
since A lie in second quadrant.
Now, 2 cot A– 5 cos A + sinA
The value of cos2 48°– sin2 12° is
A.
B.
C.
D.
[Hint: Use cos2A – sin2B = cos (A + B) cos (A – B)]
Given that, cos2 48°– sin2 12° = cos (48° + 12°) cos (48° – 12°)
[∵cos2A – sin2B = cos (A + B) cos (A – B)]
= cos60° cos36°
If then cos 2α is equal to
A. sin 2β
B. sin 4β
C. sin 2β
D. cos 2β
Given that,
…. (i)
Now
….. (ii)
…. (iii)
…… (iv)
Hence, from (i) and (iii)
Cos2α = sin4β
If then b cos 2θ + a sin 2θ is equal to
A. a
B. b
C.
D. None
Given that,
Now,
=b
If for real values of x, then
A. θ is an acute angle
B. θ is right angle
C. θ is an obtuse angle
D. No value of θ is possible
Given that,
⇒ x2+1 = x cos θ
⇒ x2- cos θx +1 = 0
We know that, b2-4ac ≥ 0
⇒ (-cos θ)2-4×1×1 ≥ 0
⇒ cos2θ -4 ≥ 0
⇒ cos2θ ≥ 4
⇒ cos θ ≥ ± 2
But -1 ≤ cos θ ≤ 1
So, no value of θ is possible
Fill in the blanks
The value of is _______.
=1
Fill in the blanks
If then the numerical value of k is _________.
Given that,
⇒ k = sin 10° sin 50° sin 70°
= sin 10° sin (90° - 40°). sin (90° - 20°)
= sin 10° cos 40° cos 20°
[∵ 2 cos x cos y = cos(x + y)+cos(x-y)]
[∵ 2 sin x cos y = sin (x + y)+sin(x-y)]
Fill in the blanks
If then tan 2A = _______.
Given that,
Now,
= tan B
⇒ tan 2A = tan B
Fill in the blanks
If sin x + cos x = a, then
(i) sin6 x + cos6x = _______
(ii) |sin x – cos x| = ______.
Given that, sin x + cos x = a
Squaring both sides, we get
(sin x + cos x)2 = a2
⇒ sin2x + cos2x + 2sin x cos x = a2
⇒ 1 + 2sin x cos x = a2
(i) sin6 x + cos6x = (sin2x)3 + (cos2x)3
= (sin2x+ cos2x)3 -3 sin2x cos2x(sin2x+ cos2x)
(ii) |sin x – cos x| =
|sin x – cos x|2 = sin2x + cos2x - 2sin x cos x
=1-(a2 -1)
= 1-a2+1 = 2- a2
⇒ |sin x – cos x| =
Fill in the blanks
In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ________.
[Hint: A + B = 90°⇒ tan A tan B = 1 and tan A + tan B ]
Given that, a ΔABC with ∠C = 90° and an equation whose roots are tan A and tan B
⇒ x2 – (tan A + tan B)x + tan A. tan B = 0 (i)
Now, A+B = 90° [∵ ∠C = 90°]
⇒ tan(A+B) = tan90°
⇒ 1-tan A tan B = 0
⇒ tan A tan B = 1 (ii)
Now,
Substituting the values from (ii) and (iii) in equation (i), we get
Fill in the blanks
3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4(sin6 x + cos6 x) = _______.
We have, 3(sin x – cos x)4 + 6 (sin x + cos x)2 + 4(sin6 x + cos6 x)
=3(sin2x+cos2x-2sin x cos x)2+6(sin2x+cos2x+2sin x cos x) +4[(sin2x)3 + (cos2x)3]
=3(1-2sin x cos x)2+6(1+2sin x cos x) +4[(sin2x+ cos2x)3 -3 sin2x cos2x(sin2x+ cos2x)]
=3(1+4 sin2x cos2x-4sin x cos x) +6+12sin x cos x+4-12sin2x cos2x
=3+12 sin2x cos2x-12 sin x cos x+6+12sin x cos x+4-12sin2x cos2x
=3+6+4
= 13
Fill in the blanks
Given x > 0, the values of lie in the interval _______.
We have,
Let
∴ f(x) = -3cosy
We know that, -1 ≤ cos y ≤ 1
⇒ -3 ≤ 3cosy ≤ 3
⇒ 3 ≥ -3cosy ≥ -3
⇒ -3 ≤ -3cosy ≤ 3
Hence,
Fill in the blanks
The maximum distance of a point on the graph of the function from x-axis is _____.
We have, y = √3 sin x + cos x
The maximum distance of a point on the graph of the function y = √3 sin x+cos x from x-axis is
=2
True and False
If then tan 2A = tan B.
True
Explanation:
We have,
⇒ tan 2A = tan B
True and False
The equality sin A + sin 2A + sin 3A = 3 holds for some real value of A.
False
Explanation:
We know that, maximum value of sin A is 1.
Given that, sin A + sin 2A + sin 3A = 3
It is possible when sin A = sin 2A = sin 3A=1
But sin2A and sin3A is not equal to 1.
Hence, statement is false.
True and False
sin 10° is greater than cos 10°.
False
Explanation:
Let, sin 10° > cos 10°
⇒ sin 10° > cos (90° - 80°)
⇒ sin 10° > sin80°
Which is not possible since value of sin increases with increase in θ.
Hence, statement is false.
True and False
True
Explanation:
We have,
=cos24° cos48° cos96° cos192°
=RHS
True and False
One value of θ which satisfies the equation sin4θ – 2sin2θ – 1 lies between 0 and 2π.
False
Explanation:
We have, sin4θ – 2sin2θ – 1 = 0
Now,
⇒ sin2θ = 1±√2
⇒ sin2θ = 1+√2 or 1-√2
We know that, -1≤ sin θ ≤ 1
⇒ sin2θ ≤ 1
but sin2θ = 1+√2 or 1-√2
Which is not possible.
Hence, the above statement is false.
True and False
If cosec x = 1 + cot x then
True
Explanation:
We have, cosec x = 1 + cot x
⇒ sin x+cos x = 1
=2nπ
Hence, statement is true.
True and False
If tan θ + tan 2θ + tan θ tan 2θ = , then
True
Explanation:
We have, tan θ + tan 2θ + tan θ tan 2θ =
⇒ tan θ + tan 2θ = -√3 tan θ tan2θ +√3
⇒ tan θ + tan 2θ = √3(1- tan θ tan2θ)
⇒ tan(θ +2θ )=√3
True and False
If tan(π cos θ) = cot (π sin θ), then
True
Explanation:
We have, tan(π cos θ) = cot (π sin θ)
In the following match each item given under the column C1 to its correct answer given under the column C2:
(a) sin (x + y) sin(x – y)
= (sin x.cos y + sin y.cos x)( sin x.cos y - sin y.cos x)
= sin2x cos2y+ sin y.cos x. sin x.cos y- sin x.cos y sin y.cos x- sin2y cos2x
= sin2x cos2y- sin2y cos2x
= sin2x(1- sin2y)- sin2y(1- sin2x)
= sin2x- sin2x sin2y- sin2y+ sin2x sin2y
= sin2x – sin2y
⇒ (a) matches with (iv)
(b) cos(x + y) cos(x – y)
= (cos x.cos y−sin x.sin y)( cos x.cosy+sin x.siny)
= (cos2x cos2y+ cos x.cos y sin x.siny- sin x.sin y cos x.cosy- sin2x sin2y)
= cos2x cos2y- sin2x sin2y
= cos2x(1- sin2y)-(1- cos2x) sin2y
= cos2x- cos2x sin2y- sin2y+ cos2x sin2y
= cos2x – sin2y
⇒ (b) matches with (i)
(c)
⇒ (c) matches with (ii)
(c)
⇒ (d) matches with (iii)