Buy BOOKS at Discounted Price

Complex Numbers And Quadratic Equations

Class 11th Mathematics NCERT Exemplar Solution
Exercise
  1. For a positive integer n, find the value of (1 – i)n ( 1 - {1}/{i} )…
  2. Evaluate sum _ { n = 1 } ^{13} ( i^{n} + i^{n+1} ) where n ϵ N.…
  3. If ( {1+i}/{1-i} ) ^{3} - ( frac {1-i}/{1+i} ) ^{3} = x+iy then…
  4. If { (1+i)^{2} }/{2-i} = x+iy the find the value of x + y.
  5. If ( {1-i}/{1+i} ) ^{100} = a+ib then find (a, b).
  6. If a = cos θ + i sin θ, find the value of {1+a}/{1-a}
  7. If (1 + i)z = (1 – i) bar {z} then show that z = 1 bar {z}
  8. If z = x + iy, then show that z bar z+2 (z + bar z) + b = 0 where bϵR,…
  9. If the real part of bar z+2/bar z-1 is 4, then show that the locus of the point…
  10. Show that the complex number z, satisfying the condition arg (z-1/z+1) = pi /4…
  11. Solve that equation |z| = z + 1 + 2i.
  12. If |z + 1| = z + 2 (1 + i), then find z.
  13. If arg (z - 1) = arg (z + 3i), then find x - 1 : y. where z = x + iy…
  14. Show that | z-2/z-3 | = 2 represents a circle. Find its centre and radius.…
  15. If z-1/z+1 is a purely imaginary number (z ≠ -1), then find the value of |z|.…
  16. z1 and z2 are two complex numbers such that |z1| = |z2| and arg (z1) + arg (z2) =…
  17. If |z1| = 1 (z1 ≠ -1) and z_2 = z_1-1/z_1+1 then show that the real part of z2 is…
  18. If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find arg…
  19. If |z1| = |z2| = ….. = |zn| = 1, then Show that |z1 + z2 + z3 + …. + zn| = |…
  20. If for complex numbers z1 and z2, arg (z1) - arg (z2) = 0, then show that |z1 -…
  21. Solve the system of equations Re (z2) = 0, |z| = 2.
  22. Find the complex number satisfying the equation z + root 2| (z+1) |+i = 0…
  23. Write the complex number z = 1-i/cos pi /3 + isin pi /3 in polar from.…
  24. If z and w are two complex numbers such that |zw| = 1 and arg (z) - arg (w) =…
  25. For any two complex numbers z1, z2 and any real numbers a, b, |az1 - bz2|^2 +…
  26. The value of root -25 x root -9 is ………………………………. Fill in the blanks of the…
  27. The number (1-i)^3/1-i^3 is equal to ……………….. Fill in the blanks of the…
  28. The sum of the series i + i^2 + i^3 + …. Upto 1000 terms is………… Fill in the…
  29. Multiplicative inverse of 1 + i is ……………….. Fill in the blanks of the following…
  30. If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 =…
  31. arg (z) + arg bar z (bar z not equal 0) is ……………. Fill in the blanks of the…
  32. If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ……… and …….…
  33. If | z-2/z+2 | = pi /6 then the locus of z is …………. Fill in the blanks of the…
  34. If |z| = 4 and arg (z) = 5π/6, then z = ……….. Fill in the blanks of the…
  35. The order relation is defined on the set of complex numbers. State True of False…
  36. Multiplication of a non zero complex number by -i rotates the point about origin…
  37. For any complex number z the minimum value of |z| + |z - 1| is 1. State True of…
  38. The locus represented by |z - 1| = |z - i| is a line perpendicular to the join…
  39. If z is a complex number such that z ≠ 0 and Re (z) = 0, then Im (z^2) = 0.…
  40. The inequality |z - 4| |z - 2| represents the region given by x 3. State True of…
  41. Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg…
  42. 2 is not a complex number. State True of False for the following:…
  43. Match the statements of Column A and Column B. Column A Column B (a) The polar…
  44. What is the conjugate of 2-i/(1-2i)^2 ?
  45. If |z1| = |z2|, is it necessary that z1 = z2?
  46. If (a^2 + 1)^2/2a-i = x+iy what is the value of x2 + y2?
  47. Find z if |z| = 4 and arg (z) = 5π/6.
  48. Find | (1+i) (2+i)/(3+i) |
  49. Find principal argument of (1+i root 3)^2
  50. Where does z lie, if | z-5i/z+5i | = 1
  51. sinx + i cos2x and cos x - i sin 2x are conjugate to each other for:A. x = nπ B.…
  52. The real value of α for which the expression 1-isinalpha /1+2isinalpha is purely…
  53. If z = x + iy lies in the third quadrant, the bar z/z also lies in the third…
  54. The value of (z + 3) (bar z+3) is equivalent toA. |z + 3|^3 B. |z - 3| C. z^2 + 3…
  55. If (1+i/1-i)^x = 1 , thenA. x = 2n + 1 B. x = 4n C. x = 2n D. x = 4n + 1…
  56. A real value of x satisfies the equation (3-4ix/3+4ix) = alpha -i beta (alpha ,…
  57. Which of the following is correct for any two complex numbers z1 and z2?A. |z1…
  58. The point represented by the complex number 2 - i is rotated about origin through…
  59. Let x, y ϵ R, then x + iy is a non real complex number if:A. x = 0 B. y = 0 C. x…
  60. If a + ib = c + id, thenA. a^2 + c^2 = 0 B. b^2 + c^2 = 0 C. b^2 + d^2 = 0 D. a^2…
  61. The complex number z which satisfies the condition | i+z/i-z | = 1 lies onA.…
  62. If z is a complex number, thenA. |z^2 | |z|^2 B. |z^2 | = |z|^2 C. |z^2 | |z|^2…
  63. |z1 + z2| = |z1| + |z2| is possible ifA. z_2 = bar z_1 B. z_2 = 1/z_1 C. arg (z1)…
  64. The real value of θ for which the expression 1+icostheta /1-2icostheta is a real…
  65. The value of arg (x) when x 0 is:A. 0 B. pi /2 C. π D. none of these…
  66. If f (z) = 7-z/1-z^2 where z = 1 + 2i, then |f(z)| isA. |z|/2 B. |z| C. 2|z| D.…

Exercise
Question 1.

For a positive integer n, find the value of (1 – i)n.


Answer:

Given


= (1 – i)n (1 + i)n


= (1 – i2)n


= 2n




Question 2.

Evaluate where n ϵ N.


Answer:

Given


= (1 + i) (1 + i2 + i3 + i4 + i5 + i6 + i7 + i8 + i9 + i10 + i11 + i12 + i13)




= (1 + i) i


= i + i2


= i – 1




Question 3.

If then find (x, y).


Answer:

Given





= i3 – (-i3)


= 2i3


= 0 – 2i


Thus, (x, y) = (0, -2)



Question 4.

If the find the value of x + y.


Answer:

Given




Rationalizing the denominator,






Thus,


Hence,



Question 5.

If then find (a, b).


Answer:

Given






= (i4)25


= 1


∴ (a, b) = (1, 0)



Question 6.

If a = cos θ + i sin θ, find the value of


Answer:

Given a = cos θ + i sin θ








∴ If a = cos θ + i sin θ, the value of



Question 7.

If (1 + i)z = (1 – i) then show that


Answer:

Given (1 + i) z = (1 – i) z̅



Rationalizing the denominator,






= -iz̅


Hence proved.



Question 8.

If z = x + iy, then show that where bϵR, representing z in the complex plane is a circle.


Answer:

Given z = x + iy


⇒ z̅ = x – iy


Now, z z̅ + 2 (z + z̅) + b = 0


⇒ (x + iy) (x – iy) + 2 (x + iy + x – iy) + b = 0


⇒ x2 + y2 + 4x + b = 0


This is the equation of a circle.



Question 9.

If the real part of is 4, then show that the locus of the point representing z in the complex plane is a circle.


Answer:

Let z = x + iy


Now,




Given that real part is 4.



⇒ x2 + x – 2 + y2 = 4 (x2 – 2x + 1 + y2)


⇒ 3x2 + 3y2 – 9x + 6 = 0


Which represents a circle.


Hence, locus of z is a circle.



Question 10.

Show that the complex number z, satisfying the condition arg lies on a circle.


Answer:

Let z = x + iy


Given


⇒ arg (z – 1) – arg (z + 1) = π/4


⇒ arg (x + iy – 1) – arg (x + iy + 1) = π/4


⇒ arg (x – 1 + iy) – arg (x + 1 + iy) = π/4






⇒ x2 + y2 – 1 = 2y


⇒ x2 + y2 – 2y – 1 = 0


Which represents a circle.



Question 11.

Solve that equation |z| = z + 1 + 2i.


Answer:

Given |z| = z + 1 + 2i


Putting z = x + iy, we get


⇒ |x + iy| = x + iy + 1 + 2i


We know that



Comparing real and imaginary parts,



And 0 = y + 2


⇒ y = -2


Putting this value of y in ,


⇒ x2 + (-2)2 = (x + 1)2


⇒ x2 + 4 = x2 + 2x + 1


∴ x = 3/2


∴ z = x + iy


= 3/2 – 2i



Question 12.

If |z + 1| = z + 2 (1 + i), then find z.


Answer:

Given |z + 1| = z + 2 (1 + i)


Putting z = x + iy, we get


⇒ |x + iy + 1| = x + iy + 2 (1 + i)


We know that



Comparing real and imaginary parts,



And 0 = y + 2


⇒ y = -2


Putting this value of y in ,


⇒ (x + 1)2 + (-2)2 = (x + 2)2


⇒ x2 + 2x + 1 + 4 = x2 + 4x + 4


⇒ 2x = 1


∴ x = 1/2


∴ z = x + iy


= 1/2 – 2i



Question 13.

If arg (z – 1) = arg (z + 3i), then find x – 1 : y. where z = x + iy


Answer:

Let z = x + iy


Given arg (z – 1) = arg (z + 3i)


⇒ arg (x + iy – 1) = arg (x + iy + 3i)


⇒ arg (x – 1 + iy) = arg (x + I (y) = π/4




⇒ xy = xy – y + 3x – 3


⇒ 3x – 3 = y



∴ (x – 1): y = 1: 3



Question 14.

Show that represents a circle. Find its centre and radius.


Answer:

Given


Substituting z = x + iy, we get



⇒ |x – 2 + iy| = 2 |x – 3 + iy|



⇒ x2 – 4x + 4 + y2 = 4 (x2 – 6x + 9 + y2)


⇒ 3x2 + 3y2 – 20x + 32 = 0





Hence, centre of circle is (10/3, 0) and radius is 2/3.



Question 15.

If is a purely imaginary number (z ≠ –1), then find the value of |z|.


Answer:

Let z = x + iy


Now,




Given that is purely imaginary.



⇒ x2 – 1 + y2 = 0


⇒ x2 + y2 = 1



∴ |z| = 1



Question 16.

z1 and z2 are two complex numbers such that |z1| = |z2| and arg (z1) + arg (z2) = π, then show that


Answer:

Let z1 = |z1| (cos θ1 + I sin θ1) and z2 = |z2| (cos θ2 + I sin θ2)


Given that |z1| = |z2|


And arg (z1) + arg (z2) = π


⇒ θ1 + θ2 = π


⇒ θ1 = π – θ2


Now, z1 = |z2| (cos (π - θ2) + I sin (π - θ2))


⇒ z1 = |z2| (-cos θ2 + I sin θ2)


⇒ z1 = -|z2| (cos θ2 – I sin θ2)


⇒ z1 = - [|z2| (cos θ2 – I sin θ2)]


∴ z1 = -z̅ 2


Hence proved.



Question 17.

If |z1| = 1 (z1 ≠ –1) and then show that the real part of z2 is zero.


Answer:

Let z1 = x + iy



Now,





Since x2 + y2 = 1




∴ Hence, the real part of z2 is zero.



Question 18.

If z1, z2 and z3, z4 are two pairs of conjugate complex numbers, then find


Answer:

Given z1 and z2 are conjugate complex numbers.


⇒ z2 = z̅ 1 = |z|/2pi is,


he negative side of the real axis


= r1 (cos θ1 - i sin θ1)


= r1 [cos (-θ1) + I sin (-θ1)]


Similarly, z3 = r2 (cos θ2 - i sin θ2)


⇒ z4 = r2 [cos (-θ2) + I sin (-θ2)]



= θ1 – (-θ2) + (-θ1) – θ2


= θ1 + θ2 – θ1 – θ2


= 0




Question 19.

If |z1| = |z2| = ….. = |zn| = 1, then

Show that |z1 + z2 + z3 + …. + zn|


Answer:

Given |z1| = |z2| = … = |zn| = 1


⇒ |z1|2 = |z2|2 = … = |zn|2 = 1


⇒ z11= z22= z33= … = znn= 1



Now,






Hence proved.



Question 20.

If for complex numbers z1 and z2, arg (z1) – arg (z2) = 0, then show that |z1 – z2| = |z1| – |z2|.


Answer:

Let z1 = |z1| (cos θ1 + I sin θ1) and z2 = |z2| (cos θ2 + I sin θ2)


Given arg (z1) - arg (z2) = 0


⇒ θ1 - θ2 = 0


⇒ θ1 = θ2


Now, z2 = |z2| (cos θ1 + I sin θ1)


⇒ z1 – z2 = ((|z1|cos θ1 - |z2| cos θ1) + i (|z1| sin θ1 - |z2| sin θ1))





We know that cos2 θ + sin2 θ = 1




∴ |z1 – z2| = |z1| - |z2|


Hence proved.



Question 21.

Solve the system of equations Re (z2) = 0, |z| = 2.


Answer:

Given Re (z2) = 0, |z| = 2


Let z = x + iy.


Then


Given


⇒ x2 + y2 = 4 … (1)


Also, z2 = x2 + 2ixy – y2


= (x2 - y2) + 2ixy


Now, Re (z2) = 0


⇒ x2 – y2 = 0 … (2)


Solving (1) and (2), we get


⇒ x2 = y2 = 2


⇒ x = y = ±√2


∴ z = x + iy


= ±√2 ± i√2


Hence, we have four complex numbers.



Question 22.

Find the complex number satisfying the equation


Answer:

Given equation z + √2 |(z + 1)| + i = 0 … (1)


Putting z = x + iy, we get


⇒ x + iy + √2 |x + iy + 1| + i = 0




Comparing real and imaginary parts to zero, we get


… (2)


And y + 1 = 0


⇒ y = -1


Putting y = -1 into (2), we get




⇒ 2x2 + 4x + 4 = x2


⇒ x2 + 4x + 4 = 0


⇒ (x + 2)2 = 0


⇒ x = -2


∴ z = x + iy


= -2 – i



Question 23.

Write the complex number in polar from.


Answer:

Given








Question 24.

If z and w are two complex numbers such that |zw| = 1 and arg (z) – arg (w) = π/2, then show that


Answer:

Let z = |z| (cos θ1 + I sin θ1) and w = |w| (cos θ2 + I sin θ2)


Given |zw| = |z| |w| = 1


Also arg (z) – arg (w) = π/2


⇒ θ1 - θ2 = π/2


Now, z̅ w = |z| (cos θ1 - I sin θ1) |w| (cos θ2 + I sin θ2)g | = 1


e get


ts to zero, we get


= |z| |w| (cos (-θ1) + I sin (-θ1)) (cos θ2 + I sin θ2)


= 1 [cos (θ2 – θ1) + I sin (θ2 – θ1)]


= [cos (-π/2) + I sin (-π/2)]


= 1 [0 – i]


= -i


Hence proved.



Question 25.

Fill in the blanks of the following

For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ….


Answer:

Given |az1 – bz2|2 + |bz1 + az2|2


= |az1|2 + |bz2|2 – 2 Re (az1 × bz̅ 2) + |bz1|2 + |az2|2 + 2 Re (bz1 × az̅ 2)


= (a2 + b2) |z1|2 + (a2 + b2) |z2|2


= (a2 + b2) (|z1|2 + |z2|2)bz = |



Question 26.

Fill in the blanks of the following

The value of is ……………………………….


Answer:

Given √-25 × √-9


= i √25 × i √9


= i2 (5 × 3)


= -15



Question 27.

Fill in the blanks of the following

The number is equal to ………………..


Answer:

Given






= -2



Question 28.

Fill in the blanks of the following

The sum of the series i + i2 + i3 + …. Upto 1000 terms is…………


Answer:

Given i + i2 + i3 + …. Upto 1000 terms


= (i + i2 + i3 + i4) + (i5 + i6 + i7 + i8) + … 250 brackets


Since in + in+1 + in + 2 + in + 3 = 0 where n ∈ N


= 0 + 0 + 0 … + 0


= 0



Question 29.

Fill in the blanks of the following

Multiplicative inverse of 1 + i is ………………..


Answer:

Explanation:


Given 1 + i




= 1/2 (1 – i)


∴ Multiplication inverse of 1 + i is 1/2 (1 – i).



Question 30.

Fill in the blanks of the following

If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ……..


Answer:

Let z1 = x1 + iy1 and z2 = x2 + iy2


⇒ z1 + z2 = (x1 + x2) + i (y1 + y2) which is real


⇒ y1 + y2 = 0


⇒ y1 = - y2


Assuming x1 = x2


Since z2 = x1 – iy1


∴ z2 = z̅ 1



Question 31.

Fill in the blanks of the following

arg (z) + arg is …………….


Answer:

⇒ arg (z) + arg z̅


= θ + (-θ)


= 0



Question 32.

Fill in the blanks of the following

If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ……… and …….


Answer:

Given |z + 4| ≤ 3


For greatest value of |z + 1|,


⇒ |z + 1| = |z + 4 – 3|


⇒ |z + 1| ≤ |z + 4 – 3|


⇒ |z + 1| ≤ 3 + 3


⇒ |z + 1| ≤ 6


So, greatest value of |z + 1| is 6.


We know that least value of the modulus of a complex number is zero.


So, the least value of |z + 1| is zero.



Question 33.

Fill in the blanks of the following

If then the locus of z is ………….


Answer:

Explanation:


Given




⇒ 6 |x – 2 + iy| = π |x + 2 + iy|


Squaring on both sides,


⇒ 36 |x – 2 + iy|2 = π2 |x + 2 + iy|2


⇒ 36 [x2 – 4x + 4 + y2] = π2 [x2 – 4x + 4 + y2]


⇒ (36 – π2) x2 + (36 – π2) y2 – (144 + 4π2) x + 144 – 4π2 = 0


Which is a circle.



Question 34.

Fill in the blanks of the following

If |z| = 4 and arg (z) = 5π/6, then z = ………..


Answer:

Given |z| = 4 and arg (z) = 5π/6


Let z = |z| (cos θ + i sin θ) where θ = arg (z)




= -2√3 + 2i


∴ z = -2√3 + 2i



Question 35.

State True of False for the following:

The order relation is defined on the set of complex numbers.


Answer:

False

Explanation:


We can compare two complex numbers when they are purely real. Otherwise comparison of complex numbers is not possible or has no meaning.



Question 36.

State True of False for the following:

Multiplication of a non zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.


Answer:

False

Explanation:


Let z = x + iy, where x, y > 0


i.e. z or point A (x, y) lies in first quadrant.


Now, -iz = -I (x + iy)


= -ix – i2y


= y – ix


Now, point B (y, -x) lies in fourth quadrant.


Also ∠AOB = 90°


Thus, B is obtained by rotating A in clockwise direction about origin.



Question 37.

State True of False for the following:

For any complex number z the minimum value of |z| + |z – 1| is 1.


Answer:

True

Explanation:


Given |z| + |z – 1|


We know that |z1| + |z2| ≥ |z1 – z2|


⇒ |z| + |z – 1| ≥ |z – (z – 1) |


⇒ |z| + |z – 1| ≥ 1


So, minimum value of |z| + |z – 1| is 1.



Question 38.

State True of False for the following:

The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).


Answer:

True

Explanation:


Given |z – 1| = |z – i|


Putting z = x + iy,


⇒ |x – 1 + iy| = |x – i (1 – y) |


⇒ (x – 1)2 + y2 = x2 + (1 – y)2


⇒ x2 - 2x + 1 + y2 = x2 + 1 + y2 – 2y


⇒ -2x + 1 = 1 – 2y


⇒ -2x + 2y = 0


⇒ x – y = 0


Now, equation of a line through the points (1, 0) and (0, 1) is



⇒ x + y = 1


This line is perpendicular to the line x – y = 0.



Question 39.

State True of False for the following:

If z is a complex number such that z ≠ 0 and Re (z) = 0, then Im (z2) = 0.


Answer:

False

Explanation:


Given z ≠ 0 and Re (z) = 0


Let z = x + iy


Then x = 0


∴ z = iy


⇒ Im (z2) = i2y2 = -y2 ≠ 0



Question 40.

State True of False for the following:

The inequality |z – 4| < |z – 2| represents the region given by x > 3.


Answer:

True

Explanation:


Given |z – 4| < |z – 2|


Putting z = x + iy,


⇒ |x – 4 + iy| < |x – 2 + iy|



⇒ (x – 4)2 + y2 < (x – 2)2 + y2


⇒ x2 – 8x + 16 + y2 < x2 – 4x + 4 + y2


⇒ -8x + 16 < -4x + 4


⇒ 4x > 12


∴ x > 3



Question 41.

State True of False for the following:

Let z1 and z2 be two complex numbers such that |z1 + z2| = |z1| + |z2|, then arg (z1 – z2) = 0.


Answer:

False

Explanation:


Given |z1 + z2| = |z1| + |z2|


⇒ |z1 + z2|2 = |z1|2 + |z2|2 + 2 |z1| |z2|


⇒ |z1|2 + |z2|2 + 2 Re (z12) = |z1|2 + |z2|2 + 2 |z1| |z2|


⇒ 2 Re (z12) = 2 |z1| |z2|


⇒ cos (θ1 – θ2) = 1


⇒ θ1 – θ2 = 0


∴ arg (z1) – arg (z2) = 0



Question 42.

State True of False for the following:

2 is not a complex number.


Answer:

False

Explanation:


We know that any real number is also a complex number.


∴ 2 is a complex number.



Question 43.

Match the statements of Column A and Column B.


Answer:

(a) Given z = i + √3


So, |z| = |i + √3|



= 2


Also, z lies in the first quadrant.



= π/6


∴ The polar form of z is


(b) Given z = -1 + √-3


= -1 + i √3


Here z lies in the second quadrant.


⇒ arg (z) = amp (z)



= π – tan-1 √3


= π - π/3


= 2π/3


(c) Given |z + 2| = |z – 2|


⇒ |x + 2 + iy| = |x – 2 + iy|


⇒ (x + 2)2 + y2 = (x – 2)2 + y2


⇒ x2 + 4x + 4 = x2 – 4x + 4


⇒ 8x = 0


∴ x = 0


It is a straight line which is a perpendicular bisector of segment joining the points (-2, 0) and (2, 0).


(d) Given |z + 2i| = |z – 2i|


⇒ |x + i(y + 2)| = |x + i(y - 2)|


⇒ (x)2 + (y + 2)2 = (x)2 + (y – 2)2


⇒ 4y = 0


∴ y = 0


It is a straight line which is a perpendicular bisector of segment joining the points (0, -2) and (0, 2).


(e) Given |z + 4i| ≥ 3


⇒ |x + iy + 4i| ≤ 3


⇒ |x + i(y + 4)|≤ 3



⇒ (x)2 + (y + 4)2 ≤ 9


⇒ x2 + y2 + 8y + 16 ≤ 9


⇒ x2 + y2 + 8y + 7 ≤ 0


This represents the region on or outside circle having centre (0, -4) and radius 3.


(f) Given |z + 4| ≤ 3


⇒ |x + iy + 4| ≤ 3


⇒ |x + 4 + iy|≤ 3



⇒ (x + 4)2 + y2 ≤ 9


⇒ x2 + 8x + 16 + y2 ≤ 9


⇒ x2 + 8x + y2 + 7 ≤ 0


This represents the region on or inside circle having centre (-4, 0) and radius 3.


(g) Given






Hence z̅ lies in the third quadrant.


(h) Given z̅ = 1 - i


lies in the third quadrant.


,outr inside circle having centre (-4, 0) and radius 3.nts (-2, x numbers is not possible or has no



= 1/2 (1 + i)


∴ Reciprocal of z lies in first quadrant.



Question 44.

What is the conjugate of


Answer:

Explanation:


Given






Rationalizing the denominator,









Question 45.

If |z1| = |z2|, is it necessary that z1 = z2?


Answer:

Explanation:


Given |z1| = |z2|


If |z1| = |z2| then z1 and z2 are at the same distance from origin.


But if arg (z1) ≠ arg (z2) then z1 and z2 are different.


So, if |z1| = |z2|, then it is not necessary that z1 = z2.


For example: z1 = 3 + 4i and z2 = 4 + 3i


Here |z1| = |z2| = 5 but z1 ≠ z2.



Question 46.

If what is the value of x2 + y2?


Answer:

Explanation:


Given






Question 47.

Find z if |z| = 4 and arg (z) = 5π/6.


Answer:

Explanation:


Given |z| = 4 and arg (z) = 5π/6


Let z = |z| (cos θ + i sin θ) where θ = arg (z)




= -2√3 + 2i


∴ z = -2√3 + 2i



Question 48.

Find


Answer:

Explanation:


Given





= 1




Question 49.

Find principal argument of


Answer:

Explanation:


Given z = (1 + i√3)2


= 1 – 3 + 2i√3


= -2 + i (2√3)


So, z lies in second quadrant.



= π – tan-1 √3


= π - π/3


= 2π/3



Question 50.

Where does z lie, if


Answer:

Explanation:


Given


⇒ |z – 5i| = |z + 5i|


⇒ |x + iy – 5i| = |x + iy + 5i|


⇒ |x + i (y – 5) |2 = |x + i (y + 5) |2


⇒ x2 + (y – 5)2 = x2 + (y + 5)2


⇒ 20y = 0


⇒ y = 0


∴ z lies on the x – axis.



Question 51.

sinx + i cos2x and cos x – i sin 2x are conjugate to each other for:
A. x = nπ

B.

C. x = 0

D. No value of x


Answer:

Given that sin x + i cos 2x and cos x – i sin 2x are conjugate to each other.



⇒ sin x - i cos 2x = cos x – i sin 2x


On comparing real and imaginary parts of both sides, we get


⇒ sin x = cos x and cos 2x = sin 2x


⇒ tan x = 1 and tan 2x = 1


Consider tan 2x = 1


We know that



This is not satisfied by tan x = 1.


Hence, no value of x is possible.


Question 52.

The real value of α for which the expression is purely real is:
A.

B.

C. nπ

D. None of these


Answer:

Given


Rationalizing the denominator,





It is given that z is purely real.



⇒ -3 sin α = 0


⇒ sin α = 0


∴ α = nπ, n ∈ I


Question 53.

If z = x + iy lies in the third quadrant, the also lies in the third quadrant if
A. x > y > 0

B. x < y < 0

C. y < x < 0

D. y > x > 0


Answer:

Since z = x + iy lies in the third quadrant, we get


X < 0 and y < 0


Now





Since also lies in third quadrant, we get



⇒ x2 – y2 < 0 and -2xy < 0


⇒ x2 < y2 and xy > 0


But x, y < 0


∴ y < x < 0


Question 54.

The value of (z + 3) is equivalent to
A. |z + 3|3

B. |z – 3|

C. z2 + 3

D. None of these


Answer:

Given (z + 3) (z̅ + 3) = (x + iy + 3) (x –iy + 3)


= (x + 3)2 – (iy)2


= (x + 3)2 + y2


= |x + 3 + iy|2


= |z + 3|2


Question 55.

If , then
A. x = 2n + 1

B. x = 4n

C. x = 2n

D. x = 4n + 1


Answer:

Given


Rationalizing the denominator,





⇒ ix = 1


∴ x = 4n, n ∈ N


Question 56.

A real value of x satisfies the equation if α2 + β2 =
A. 1

B. –1

C. 2

D. –2


Answer:

Given


Rationalizing the denominator,





… (1)


… (2)


Multiplying equation (1) and (2),







So, α2 + β2 = 1


Question 57.

Which of the following is correct for any two complex numbers z1 and z2?
A. |z1 z2| = |z1||z2|

B. arg (z1z2) = arg (z1). Arg (z2)

C. |z1 + z2| = |z1|+ |z2|

D. |z1 + z2| ≥ |z1| – |z2|


Answer:

Let z1 = |z1| (cos θ1 + i sin θ1) and z2 = |z2| (cos θ2 + i sin θ2)


Now, z1z2 = |z1| |z2| (cos θ1 + i sin θ1) (cos θ2 + i sin θ2)


= |z1| |z2| [cos θ1 cos θ2 + i sin θ1 cos θ2 + i cos θ1 sin θ2 + i2 sin θ1 sin θ2]


= |z1| |z2| [cos (θ1 + θ2) + i sin (θ1 + θ2)]


⇒ |z1 z2| = |z1| |z2|


And arg (z1 z2) = θ1 + θ2 = arg (z1) + arg (z2)


⇒ |z1 + z2| = |z1| + |z2| is true only when z1, z2 and O are collinear.


Also, |z1 + z2| ≥ ||z1| - |z2||


Question 58.

The point represented by the complex number 2 – i is rotated about origin through an angle π/2 in the clockwise direction, the new position of point is:
A. 1 + 2i

B. –1 – 2i

C. 2 + i

D. –1 + 2i


Answer:

Given z = 2 – i


If z rotated through an angle of π/2 about the origin in clockwise direction.


Then the new position = z. e-(π/2)


= (2 – i) e-(π/2)


= (2 – i) [cos (-π/2) + i sin (-π/2)]


= (2 – i) (0 – i)


= -1 – 2i


Question 59.

Let x, y ϵ R, then x + iy is a non real complex number if:
A. x = 0

B. y = 0

C. x ≠ 0

D. y ≠ 0


Answer:

X + yi is a non – real complex number if y ≠ 0 if x, y ? R.


Question 60.

If a + ib = c + id, then
A. a2 + c2 = 0

B. b2 + c2 = 0

C. b2 + d2 = 0

D. a2 + b2 = c2 + d2


Answer:

Given a + ib = c + id


⇒ |a + ib| = |c + id|



Squaring on both sides,


∴ a2 + b2 = c2 + d2


Question 61.

The complex number z which satisfies the condition lies on
A. circle x2 + y2 = 1

B. the x-axis

C. the y-axis

D. the line x + y = 1


Answer:

Given


Let z = x + yi




⇒ |x + (y + 1) i| = |-x – (y – 1) i|



⇒ x2 + (y + 1)2 = x2 + (y – 1)2


⇒ (y + 1)2 = (y – 1)2


⇒ y2 + 2y + 1 = y2 – 2y + 1


⇒ 2y = -2y


⇒ 4y = 0


⇒ y = 0 (x – axis)


Question 62.

If z is a complex number, then
A. |z2| > |z|2

B. |z2| = |z|2

C. |z2| < |z|2

D. |z2| ≥ |z|2


Answer:

Given z is a complex number.


Let z = x + yi


⇒ |z| = |x + yi| and |z|2 = |x + yi|2


⇒ |z|2 = x2 + y2 … (1)


Now z2 = x2 + y2i2 + 2xyi


⇒ z2 = x2 – y2 + 2xyi






So, |z|2 = x2 + y2 = |z|2


∴ |z|2 = |z2|


Question 63.

|z1 + z2| = |z1| + |z2| is possible if
A.

B.

C. arg (z1) = arg (z2)

D. |z1| = |z2|


Answer:

Let z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2)


Since |z1 + z2| = |z1| + |z2|


⇒ z1 + z2 = r1 cos θ1 + ir1 sin θ1+ r2 cos θ2 + ir2 sin θ2




But |z1 + z2| = |z1| + |z2|



Squaring both sides,



⇒ 2r1r2 – 2r1r2 cos (θ1 – θ2) = 0


⇒ 1 – cos (θ1 – θ2) = 0


⇒ cos (θ1 – θ2) = 1


⇒ (θ1 – θ2) = 0


⇒ θ1 = θ2


∴ arg (z1) = arg (z2)


Question 64.

The real value of θ for which the expression is a real number is:
A.

B.

C.

D. none of these


Answer:

Let


Rationalizing the denominator,






If z is a real number,



⇒ 3 cos θ = 0


⇒ cos θ = 0


∴ θ = (2n + 1) π/2, n ∈ N


Question 65.

The value of arg (x) when x < 0 is:
A. 0

B.

C. π

D. none of these


Answer:

Let z = x + 0i and x < 0



Since the point (-x, 0) lies on the negative side of the real axis,


∴ Principal argument (z) = π


Question 66.

If where z = 1 + 2i, then |f(z)| is
A.

B. |z|

C. 2|z|

D. none of these


Answer:

Given where z = 1 + 2i
















= |z|/2