Buy BOOKS at Discounted Price

Real Numbers

Class 9th Mathematics Part I MHB Solution
Practice Set 2.1
  1. Classify the decimal form of the given rational numbers into terminating and…
  2. Write the following rational numbers in decimal form. i. 127/200 ii. 25/99 iii. 23/7…
  3. Write the following rational numbers in form. i. 0.6^* ii. 0. bar 37 iii. 3. bar 17 iv.…
Practice Set 2.2
  1. Show that is 4√2 an irrational number.
  2. Prove that 3 + √5 is an irrational number.
  3. Represent the numbers √5 and √10 on a number line.
  4. 0.3 and -0.5 Write any three rational numbers between the two numbers given below.…
  5. -2.3 and -2.33 Write any three rational numbers between the two numbers given below.…
  6. 5.2 and 5.3 Write any three rational numbers between the two numbers given below.…
  7. -4.5 and 4.6 Write any three rational numbers between the two numbers given below.…
Practice Set 2.3
  1. State the order of the surds given below. i. cube root 7 ii. 5 root 12 iii. root [4]10…
  2. State which of the following are surds. Justify. i. cube root 51 ii. root [4]51 iii.…
  3. Classify the given pair of surds into like surds and unlike surds. i. √52, 5√13 ii.…
  4. Simplify the following surds. i. √27 ii. √50 iii. √250 iv. √112 v. √168…
  5. Compare the following pair of surds. i. 7√2, 5√3 ii. √247, √274 iii. 2√7, √28 iv. 5√5,…
  6. Simplify. i. 5√3 + 8√3 ii. 9√5 - 4√5 + √125 iii. 7√48 - √27 - √3 iv. root 7 - 3/5 root…
  7. Multiply and write the answer in the simplest form. i. 3√12 × √18 ii. 3√12 × 7√15 iii.…
  8. Divide, and write the answer in simplest form. i. √98 ÷ √2 ii. √125 ÷ √50 iii. √54 ÷…
  9. Rationalize the denominator. i. 3/root 5 ii. 1/root 14 iii. 5/root 7 iv. 6/9 root 3 v.…
Practice Set 2.4
  1. Multiply i. √3(√7 - √3) ii. (√5 - √7)√2 iii. (3√2 - √3)(4√3 - √2)…
  2. Rationalize the denominator. i. 1/root 7 + root 2 ii. 3/2 root 5-3 root 2 iii. 4/7+4…
Practice Set 2.5
  1. Find the value. (i) |15 - 2| (ii) |4 - 9| (iii) |7| |-4|
  2. Solve. i. |3x - 5| = 1 ii. |7 - 2x| = 5 iii. | 8-x/2 | = 5 iv. |5 + x/4 | = 5…
Problem Set 2
  1. Choose the correct alternative answer for the questions given below. i. Which one of…
  2. Which of the following is an irrational number?A. 0.17 B. 1. bar 513 C. 0.27 bar 46 D.…
  3. Decimal expansion of which of the following is non-terminating recurring?A. 2/5 B.…
  4. Every point on the number line represent, which of the following numbers?A. Natural…
  5. The number 0.4 in p/q form is ………….A. 4/9 B. 40/9 C. 3.6/9 D. 36/9…
  6. What is √n, if n is not a perfect square number?A. Natural number B. Rational number…
  7. Which of the following is not a surd?A. √7 B. 3√17 C. 3√64 D. √193…
  8. What is the order of the surd ?A. 3 B. 2 C. 6 D. 5
  9. Which one is the conjugate pair of 2√5 + √3?A. -2√5 + √3 B. -2√5 - √3 C. 2√3 + √5 D.…
  10. The value of|12 (13 + 7) 4| is ...........A. -68 B. 68 C. -32 D. 32…
  11. Write the following numbers in p/q form. i. 0.555 ii. 29. bar 568 iii. 9.315 315 ...…
  12. Write the following numbers in its decimal form. i. -5/7 ii. 9/11 iii. √5 iv. 121/13 v.…
  13. Show that 5 + √7 is an irrational number.
  14. Write the following surds in simplest form. i. 3/4 root 8 ii. - 5/9 root 45…
  15. Write the simplest form of rationalizing factor for the given surds. i. √32 ii. √50…
  16. Simplify. i. 4/7 root 147 + 3/8 root 192 - 1/5 root 75 ii. 5 root 3+2 root 27 + 1/root…
  17. Rationalize the denominator. i. 1/root 5 ii. 2/3 root 7 iii. 1/root 3 - root 2 iv. 1/3…

Practice Set 2.1
Question 1.

Classify the decimal form of the given rational numbers into terminating and non-terminating recurring type.

i. ii.

iii. iv.

v.


Answer:

i.


∵ The division is exact


∴ it is a terminating decimal.


ii.


∵ The division never ends and the digits ‘18’ is repeated endlessly


∴ it is a non-terminating recurring type decimal.


iii.


∵ The division is exact


∴ it is a terminating decimal.


iv.


∵ The division is exact


∴ it is a terminating decimal.


v.


∵ The division never ends and the digit ‘3’ is repeated endlessly


∴ it is a non-terminating recurring type decimal.



Question 2.

Write the following rational numbers in decimal form.

i. ii.

iii. iv.

v.


Answer:

i.


ii.


iii.


iv.


v.



Question 3.

Write the following rational numbers in form.

i. ii.

iii. iv.

v.


Answer:

i.


Let


⇒ 10x = 6.66666......


Now,


10x - x = 6.66 – 0.6666


⇒9x = 6




ii.


Let


⇒ 100x = 37.3737......


Now,


100x - x = 37.3737 – 0.3737


⇒ 99x = 37




iii.


Let


⇒ 100x = 317.1717......


Now,


100x - x = 317.1717 – 3.1717


⇒ 99x = 314




iv.


Let


⇒ 100x = 1589.8989......


Now,


100x - x = 1589.8989 – 15.8989


⇒ 99x = 1574




v.


Let


⇒ 1000x = 2514.514514......


Now,


1000x - x = 2514.514514 – 2.514514


⇒ 999x = 2512






Practice Set 2.2
Question 1.

Show that is 4√2 an irrational number.


Answer:

Let us assume that 4√2 is a rational number



where, b≠0 and a, b are integers



∵ a, b are integers ∴ 4b is also integer


is rational which cannot be possible


which is an irrational number


∵ it is contradicting our assumption


∴ the assumption was wrong


Hence, 4√2 is an irrational number



Question 2.

Prove that 3 + √5 is an irrational number.


Answer:

Let us assume that 3 + √5 is a rational number



where, b≠0 and a, b are integers




∵ a, b are integers ∴ a – 3b is also integer


is rational which cannot be possible


which is an irrational number


∵ it is contradicting our assumption ∴ the assumption was wrong


Hence, 3 + √5 is an irrational number



Question 3.

Represent the numbers √5 and √10 on a number line.


Answer:

By Pythagoras theorem,


(√5)2 = 22 + 12


⇒ (√5)2 = 4 + 1



First mark 0 and 2 on the number line. Then, draw a perpendicular of 1 unit from 2. And Join the top of perpendicular and 0. This line would be equal to √5. Now measure the line with compass and marc an arc on the number line with the same measurement. This point is √5.



Also,


By Pythagoras theorem,


(√10)2 = 32 + 12


⇒ (√10)2 = 9 + 1



First mark 0 and 3 on the number line. Then, draw a perpendicular of 1 unit from 3. And Join the top of perpendicular and 0. This line would be equal to √10. Now measure the line with compass and marc an arc on the number line with the same measurement. This point is √10.




Question 4.

Write any three rational numbers between the two numbers given below.

0.3 and -0.5


Answer:

0.3 and -0.5


To find a rational number x between two rational numbers and , we use



Therefore, to find rational number x (let) between


and






Now if we find a rational number between and it will also be between 0.3 and -0.5 since lies between 0.3 and -0.5.


Therefore, to find rational number y (let) between and






Now if we find a rational number between and it will also be between 0.3 and -0.5 since lies between 0.3 and -0.5.


Therefore, to find rational number z (let) between and






Hence the numbers are -0.2, -0.1 and 0.1



Question 5.

Write any three rational numbers between the two numbers given below.

-2.3 and -2.33


Answer:

-2.3 and -2.33


To find a rational number x between two rational numbers and , we use



Therefore, to find rational number x (let) between and





⇒ x = -2.315


Now if we find a rational number between and it will also be between -2.3 and -2.33 since -2.315 lies between -2.3 and -2.33


Therefore, to find rational number y (let) between and





⇒ y = -2.3075


Now if we find a rational number between and it will also be between -2.3 and -2.33 since -2.315 lies between -2.3 and -2.33


Therefore, to find rational number z (let) between and





⇒ z = -2.3225


Hence the numbers are -2.3225, -2.3075 and -2.315



Question 6.

Write any three rational numbers between the two numbers given below.

5.2 and 5.3


Answer:

5.2 and 5.3


To find a rational number x between two rational numbers and , we use



Therefore, to find rational number x (let) between and





⇒ x = 5.25


Now if we find a rational number between and it will also be between 5.2 and 5.3 since 5.25 lies between 5.2 and 5.3


Therefore, to find rational number y (let) between and





⇒ y = 5.225


Now if we find a rational number between and it will also be between 5.2 and 5.3 since 5.25 lies between 5.2 and 5.3


Therefore, to find rational number z (let) between and





⇒ z = 5.275


Hence the numbers are 5.225, 5.25 and 5.275



Question 7.

Write any three rational numbers between the two numbers given below.

-4.5 and 4.6


Answer:

-4.5 and 4.6


To find a rational number x between two rational numbers and , we use



Therefore, to find rational number x (let) between and





⇒ x = 0.05


Now if we find a rational number between and it will also be between -4.5 and 4.6 since 0.05 lies between -4.5 and 4.6


Therefore, to find rational number y (let) between and





⇒ y = -2.225


Now if we find a rational number between and it will also be between -4.5 and 4.6 since 0.05 lies between -4.5 and 4.6


Therefore, to find rational number z (let) between and





⇒ z = 2.325


Hence the numbers are -2.225, 0.05and 2.325




Practice Set 2.3
Question 1.

State the order of the surds given below.

i. ii.

iii. iv.

v.


Answer:

In , n is called the order of the surd.


Therefore,


i.


In this, the order of surd is 3.


ii.


In this, the order of surd is 5.


iii.


In this, the order of surd is 4.


iv.


In this, the order of surd is 2.


v.


In this, the order of surd is 3



Question 2.

State which of the following are surds. Justify.

i. ii.

iii. iv.

v. vi.


Answer:

Surds are numbers left in root form (√) to express its exact value. It has an infinite number of non-recurring decimals. Therefore, surds are irrational numbers.


Therefore,


i.


It is a surd ∵ it cannot be expressed as a rational number.


ii.


It is a surd ∵ it cannot be expressed as a rational number.


iii.


It is a surd ∵ it cannot be expressed as a rational number.


iv.√256 = √162 = 16


It is not a surd ∵ it is a rational number.


v.


It is not a surd ∵ it is a rational number.


vi.


It is a surd ∵ it cannot be expressed as a rational number.



Question 3.

Classify the given pair of surds into like surds and unlike surds.

i. √52, 5√13

ii. √68, 5√3

iii. 4√18, 7√2

iv. 19√12, 6√3

v. 5√22, 7√33

vi. 5√5, √75


Answer:

Two or more surds are said to be similar or like surds if they have the same surd-factor.


And,


Two or more surds are said to be dissimilar or unlike when they are not similar.


Therefore,


i. √52, 5√13


√52 = √(2×2×13) = 2√13


5√13


∵ both surds have same surd-factor i.e., √13.


∴ they are like surds.


ii. √68, 5√3


√68 = √(2×2×17) = 2√17


5√3


∵ both surds have different surd-factors √17 and √3.


∴ they are unlike surds.


iii. 4√18, 7√2


4√18 = 4√(2×3×3) = 4×3√2 = 12√2


7√2


∵ both surds have same surd-factor i.e., √2.


∴ they are like surds.


iv. 19√12, 6√3


19√12 = 19√(2×2×3) = 19×2√3 = 38√3


6√3


∵ both surds have same surd-factor i.e., √3.


∴ they are like surds.


v. 5√22, 7√33


∵ both surds have different surd-factors √22 and √33.


∴ they are unlike surds.


vi. 5√5, √75


5√5


√75 = √(5×5×3) = 5√3


∵ both surds have different surd-factors √5 and √3.


∴ they are unlike surds.



Question 4.

Simplify the following surds.

i. √27

ii. √50

iii. √250

iv. √112

v. √168


Answer:

i.




ii.




iii.




iv.





v.






Question 5.

Compare the following pair of surds.

i. 7√2, 5√3

ii. √247, √274

iii. 2√7, √28

iv. 5√5, 7√2

v. 4√42, 9√2

vi. 5√3, 9

vii. 7, 2√5


Answer:

i. 7√2 , 5√3


(7√2)2 = 7 × 7 × √2 × √2


⇒ (7√2)2 = 49 × 2


⇒ (7√2)2 = 98


And


(5√3)2 = 5 × 5 × √3 × √3


⇒ (5√3)2 = 25 × 3


⇒ (5√3)2 = 75


Clearly,


98 > 75


∴ 7√2 > 5√3


ii. √247, √274


(√247)2 = 247


And


(√274)2 = 274


Clearly,


247 < 274


∴ √247 < √274


iii. 2√7, √28


(2√7)2 = 2 × 2 × √7 × √7


⇒ (2√7)2 = 4 × 7


⇒ (2√7)2 = 28


And


(√28)2 = 28


Clearly,


28 = 28


∴ 2√7 = √28


iv. 5√5, 7√2


(5√5)2 = 5 × 5 × √5 × √5


⇒ (5√5)2 = 25 × 5


⇒ (5√5)2 = 125


And


(7√2)2 = 7 × 7 × √2 × √2


⇒ (7√2)2 = 49 × 2


⇒ (7√2)2 = 98


Clearly,


125 = 98


∴ 5√5= 7√2


v. 4√42, 9√2


(4√42)2 = 4 × 4 × √42 × √42


⇒ (4√42)2 = 16 × 42


⇒ (4√42)2 = 672


And


(9√2)2 = 9 × 9 × √2 × √2


⇒ (9√2)2 = 81 × 2


⇒ (9√2)2 = 162


Clearly,


672 > 162


∴ 4√42 > 9√2


vi. 5√3, 9


(5√3)2 = 5 × 5 × √3 × √3


⇒ (5√3)2 = 25 × 3


⇒ (5√3)2 = 75


And


(9)2 = 9 × 9


⇒ (9)2 = 81


Clearly,


75 < 81


∴ 5√3 < 9


vii. 7, 2√5


(2√5)2 = 2 × 2 × √5 × √5


⇒ (2√5)2 = 4 × 5


⇒ (2√5)2 = 20


And


(7)2 = 7 × 7


⇒ (7)2 = 49


Clearly,


49 > 20


∴ 7 > 2√5



Question 6.

Simplify.

i. 5√3 + 8√3

ii. 9√5 – 4√5 + √125

iii. 7√48 – √27 – √3

iv.


Answer:

i. 5√3 + 8√3


5√3 + 8√3 = (5 + 8)√3


⇒ 5√3 + 8√3 = 13√3


ii. 9√5 – 4√5 + √125


9√5 – 4√5 + √125 = 9√5 – 4√5 + √(5 × 5 × 5)


⇒ 9√5 – 4√5 + √125 = 9√5 – 4√5 + √(5 × 5 × 5)


⇒ 9√5 – 4√5 + √125 = 9√5 – 4√5 + 5√5


⇒ 9√5 – 4√5 + √125 = (9 – 4 + 5)√5


⇒ 9√5 – 4√5 + √125 = 10√5


iii. 7√48 – √27 – √3


7√48 – √27 – √3 = 7√(2 × 2 × 2 × 2 × 3) – √(3 × 3 × 3) – √3


⇒ 7√48 – √27 – √3 = 7×4√3 – 3√3 – √3


⇒ 7√48 – √27 – √3 = 28√3 – 3√3 – √3


⇒ 7√48 – √27 – √3 = (28 – 3 – 1)√3


⇒ 7√48 – √27 – √3 = 24√3


iv.






Question 7.

Multiply and write the answer in the simplest form.

i. 3√12 × √18

ii. 3√12 × 7√15

iii. 3√8 × √5

iv. 5√8 × 2√8


Answer:

i. 3√12 × √18


3√12 × √18 = 3√(2 × 2 × 3) × √(2 × 3 × 3)


⇒3√12 × √18 = 3 × 2√3 × 3√2


⇒ 3√12 × √18 = 6√3 × 3√2


⇒ 3√12 × √18 = 18√6


ii. 3√12 × 7√15


3√12 × 7√15 = 3√(2 × 2 × 3) × 7√(3 × 5)


⇒3√12 × 7√15 = 3 × 2√3 × 7√(3 × 5)


⇒3√12 × 7√15 = 3 × 2 × 7 × √(3 × 3 × 5)


⇒3√12 × 7√15 = 3 × 2 × 7 × 3√5


⇒ 3√12 × 7√15 = 126√5


iii. 3√8 × √5


3√8 × √5 = 3√(2 × 2 × 2) × √5


⇒3√8 × √5 = 3 × 2√2 × √5


⇒ 3√8 × √5 = 3 × 2 ×√(2 × 5)


⇒ 3√8 × √5 = 6√10


iv. 5√8 × 2√8


5√8 × 2√8 = 5√(2 × 2 × 2) × 2√(2 × 2 × 2)


⇒5√8 × 2√8 = 5 × 2√2 × 2 × 2√2


⇒ 5√8 × 2√8 = 5 × 2 × 2 × 2 ×√(2 × 2)


⇒ 5√8 × 2√8 = 5 × 2 × 2 × 2 × 2


⇒ 5√8 × 2√8 = 80



Question 8.

Divide, and write the answer in simplest form.

i. √98 ÷ √2

ii. √125 ÷ √50

iii. √54 ÷ √27

iv. √310 ÷ √5


Answer:

i. √98 ÷ √2




⇒√98 ÷ √2 = 7


ii. √125 ÷ √50





iii. √54 ÷ √27



⇒√54 ÷ √27 = √2


iv. √310 ÷ √5




⇒ √310 ÷ √5 = √62



Question 9.

Rationalize the denominator.

i. ii.

iii. iv.

v.


Answer:

i. We know that √5 × √5 = 5, ∴ to rationalize the denominator of multiply both numerator and denominator by √5.




ii. We know that √14 × √14 = 14, ∴ to rationalize the denominator of multiply both numerator and denominator by √14.




iii. We know that √7 × √7 = 7, ∴ to rationalize the denominator of multiply both numerator and denominator by √7.




iv. We know that √3 × √3 = 3, ∴ to rationalize the denominator of multiply both numerator and denominator by √3.




v. We know that √3 × √3 = 3, ∴ to rationalize the denominator of multiply both numerator and denominator by √3.






Practice Set 2.4
Question 1.

Multiply

i. √3(√7 – √3)

ii. (√5 – √7)√2

iii. (3√2 – √3)(4√3 – √2)


Answer:

i. √3(√7 – √3)


=√3 × √7 – √3 × √3


[∵√a(√b–√c)=√a×√b–√a×√c]


=√21 – 3


ii. (√5 – √7)√2


=√5 × √2 – √7 × √2


[∵√a(√b–√c)=√a×√b–√a×√c]


=√10 – √14


iii. (3√2 – √3)(4√3 – √2)


=3√2(4√3 – √2) – √3(4√3 – √2)


=3√2×4√3 – 3√2×√2 – √3×4√3 + √3×√2


[∵√a(√b–√c)=√a×√b–√a×√c]


=12√6 – 3×2 – 4×3 + √6


=12√6 – 6 – 12 + √6


=13√6 – 18


Question 2.

Rationalize the denominator.

i. ii.

iii. iv.


Answer:

i. The rationalizing factor of √7 + √2 is √7 – √2. Therefore, multiply both numerator and denominator by √7 – √2.





[∵ (a-b)(a+b) = a2 – b2]




ii. The rationalizing factor of 2√5 – 3√2 is 2√5 + 3√2. Therefore, multiply both numerator and denominator by 2√5 + 3√2.





[∵ (a-b)(a+b) = a2 – b2]




iii. The rationalizing factor of 7 + 4√3 is 7 – 4√3. Therefore, multiply both numerator and denominator by 7 – 4√3.





[∵ (a-b)(a+b) = a2 – b2]




iv. The rationalizing factor of √5 + √3 is √5 - √3. Therefore, multiply both numerator and denominator by √5 - √3.





[∵ (a-b)(a+b) = a2 – b2]



[∵ (a-b)2 = a2 + b2 – 2ab]








Practice Set 2.5
Question 1.

Find the value.
(i) |15 - 2|
(ii) |4 - 9|
(iii) |7| × |-4|


Answer:

Absolute value describes the distance of a number on the number line from 0 without considering which direction from zero the number lies. The absolute value of a number is never negative.


Therefore,


i. |15 - 2| = |13| = 13


ii. |4 - 9| = |-5| = 5


iii. |7| × |-4| = 7 × 4 = 28



Question 2.

Solve.

i. |3x - 5| = 1

ii. |7 – 2x| = 5

iii.

iv.


Answer:

i. |3x - 5| = 1


⇒ 3x - 5 = 1 or 3x - 5 = -1


⇒ 3x = 1 + 5 or 3x = -1 + 5


⇒ 3x = 6 or 3x = 4




ii. |7 – 2x| = 5


⇒ 7 – 2x = 5 or 7 – 2x = -5


⇒ 2x = 7 - 5 or 2x = 7 + 5


⇒ 2x = 2 or 2x = 12



⇒ x = 1 or x = 6


iii.



⇒ 8 – x = 2 × 5 or 8 – x = 2 × -5


⇒ 8 – x = 10 or 8 – x = -10


⇒ x = 8 – 10 or x = 8 + 10


⇒ x = -2 or x = 18


iv.




⇒ 20 + x = 4 × 5 or 20 + x = 4 × -5


⇒ 20 + x = 20 or 20 + x = -20


⇒ x = 20 – 20 or x = -20 – 20


⇒ x = 0 or x = -40




Problem Set 2
Question 1.

Choose the correct alternative answer for the questions given below.

i. Which one of the following is an irrational number?
A. √16/25

B. √5

C. 3/9

D. √196


Answer:

An irrational number is a number that cannot be expressed as a fraction for any integers p and q and q ≠ 0.


since it can be written as , it is a rational number.


since it can be written as , it is a rational number.


since it can be written as , it is a rational number.


Since √5 cannot be written as it is an irrational number


Therefore √5 is an irrational number.


Question 2.

Which of the following is an irrational number?
A. 0.17

B.

C.

D. 0.101001000....


Answer:

An irrational number is a number that cannot be expressed as a fraction for any integers p and q and q ≠ 0.


.


Since it can be written as ,


it is a rational number.


is a rational number because it is a non-terminating but repeating decimal.


is a rational number because it is a non-terminating but repeating decimal.


0.101001000.... is an irrational number because it is a non-terminating and non-`repeating decimal.


Therefore, 0.101001000.... is an irrational number.


Question 3.

Decimal expansion of which of the following is non-terminating recurring?
A. 2/5

B. 3/16

C. 3/11

D. 137/25


Answer:

A non-terminating recurring decimal representation means that the number will have an infinite number of digits to the right of the decimal point and those digits will repeat themselves.



∵ it does not have an infinite number of digits to the right of the decimal point ∴ it is not a non-terminating recurring decimal.



∵ it does not have an infinite number of digits to the right of the decimal point ∴ it is not a non-terminating recurring decimal.



∵ it has an infinite number of digits to the right of the decimal point which are repeating themselves ∴ it is a non-terminating recurring decimal.



∵ it does not have an infinite number of digits to the right of the decimal point ∴ it is not a non-terminating recurring decimal.


Therefore, is a non-terminating recurring decimal.


Question 4.

Every point on the number line represent, which of the following numbers?
A. Natural numbers

B. Irrational numbers

C. Rational numbers

D. Real numbers.


Answer:

Every point of a number line is assumed to correspond to a real number, and every real number to a point. Therefore, Every point on the number line represent a real number.


Question 5.

The number 0.4 in p/q form is ………….
A. 4/9

B. 40/9

C. 3.6/9

D. 36/9


Answer:


∵ the denominator of all the above options is 9 ∴ we multiply both numerator and denominator by 0.9 as 10 × 0.9 = 9




Question 6.

What is √n, if n is not a perfect square number?
A. Natural number

B. Rational number

C. Irrational number

D. Options A, B, C all are correct.


Answer:

If n is not a perfect square number, then √n cannot be expressed as ratio of a and b where a and b are integers and b ≠ 0


Therefore, √n is an Irrational number


Question 7.

Which of the following is not a surd?
A. √7

B. 3√17

C. 3√64

D. √193


Answer:




Which is a rational number


Therefore, is not a surd.


Question 8.

What is the order of the surd ?
A. 3

B. 2

C. 6

D. 5


Answer:




Therefore, the order of the surd is 6.


Question 9.

Which one is the conjugate pair of 2√5 + √3?
A. -2√5 + √3

B. -2√5 - √3

C. 2√3 + √5

D. √3 + 2√5


Answer:

A math conjugate is formed by changing the sign between two terms in a binomial. For instance, the conjugate of x + y is x - y.


Now,


2√5 + √3 = √3 + 2√5


Its conjugate pair = √3 - 2√5 = -2√5 + √3


∴ The conjugate pair of 2√5 + √3 = -2√5 + √3


Question 10.

The value of |12 – (13 + 7) × 4| is ...........
A. -68

B. 68

C. -32

D. 32


Answer:

|12 – (13 + 7) × 4| = |12 – 20 × 4| (Solving it according to BODMAS)

⇒ |12 – (13 + 7) × 4| = |12 – 80|

⇒ |12 – (13 + 7) × 4| = |-68|

⇒ |12 – (13 + 7) × 4| = 68


Question 11.

Write the following numbers in p/q form.

i. 0.555 ii.

iii. 9.315 315 ... iv. 357.417417...

v.


Answer:

i.




ii.


Let


⇒ 1000x = 29568.568568......


Now,


1000x - x = 29568.568568 – 29.568568


⇒999x = 29539.0




iii.


Let x = 9.315315…


⇒ 1000x = 9315.315315......


Now,


1000x - x = 9315.315315 – 9.315315


⇒999x = 9306.0




iv.


Let x = 357.417417…


⇒ 1000x = 357417.417417…


Now,


1000x - x = 357417.417417 – 357.417417


⇒999x = 357060.0




v.


Let


⇒ 1000x = 30219.219219…


Now,


1000x - x = 30219.219219 – 30.219219


⇒999x = 30189.0





Question 12.

Write the following numbers in its decimal form.

i. -5/7 ii. 9/11

iii. √5 iv. 121/13

v. 29/8


Answer:

i.




ii.




iii.


√5 = 2.236067977…….


iv.




v.




Question 13.

Show that 5 + √7 is an irrational number.


Answer:

Let us assume that 5 + √7 is a rational number



where, b≠0 and a, b are integers




∵ a, b are integers ∴ a – 5b and b are also integers


is rational which cannot be possible ∵ which is an irrational number


∵ it is contradicting our assumption ∴ the assumption was wrong


Hence, 5 + √7 is an irrational number



Question 14.

Write the following surds in simplest form.

i. ii.


Answer:

i.





ii.






Question 15.

Write the simplest form of rationalizing factor for the given surds.

i. √32 ii. √50

iii. √27 iv. 3/5√10

v. 3√72 vi. 4√11


Answer:

i. √32





∴ Its rationalizing factor = √2


ii. √50




∴ Its rationalizing factor = √2


iii. √27




∴ Its rationalizing factor = √3



∵ √10 cannot be further simplified


∴ Its rationalizing factor = √10


v. 3√72





∴ Its rationalizing factor = √2


vi. 4√11


∵ √11 cannot be further simplified


∴ Its rationalizing factor = √11



Question 16.

Simplify.

i.

ii.

iii.

iv.

v.


Answer:

i.






= 4√3 + 3√3 – √3


= 7√3 – √3


= 6√3


ii.








iii.









iv.









v.










Question 17.

Rationalize the denominator.

i. ii.

iii. iv.

v.


Answer:

i.





ii.







iii.






iv.






v.