Resolve in to factors:
(i) x2 + xy
(ii) 3x2 – 6x
(iii) (1.6)a2 – (0.8)a
(iv) 5 – 10m – 20n
(i) x × x + x × y
taking x in common,
= x(x + y)
(ii) 3 × x × x–6 × x
taking 3 x in common,
= 3x(x–2)
(iii) 2 × 0.8 × a × a–0.8 × a
taking 0.8a in common,
= 0.8a(2a–1)
(iv) 5–5 × 2 × m–5 × 4 × n
taking 5 in common,
= 5(1–2m–4n)
Factorise:
a2 + ax + ab + bx
= a(a + x) + b(a + x)
= (a + b)(a + x)
Factorise:
3ac + 7bc – 3ad – 7bd
= c(3a + 7b)–d(3a + 7b)
= (c–d)(3a + 7b)
Factorise:
3xy – 6zy – 3xt + 6zt
= 3y(x–2z)–3t(x–2z)
= (3y–3t)(x–2z)
= 3(y–t)(x–2z)
Factorise:
y3 – 3y2 + 2y – 6 – xy + 3x
= y3 + 2y–xy–3y2 + 3x–6
= y(y2 + 2–x)–3(y2 + 2–x)
= (y–3)(y2 + 2–x)
Factorise:
4a2 – 25
Using the identity,
x2–y2 = (x + y)(x–y)
so, (2a)2–(5)2
= (2a–5)(2a + 5)
Using the identity,
x2–y2 = (x + y)(x–y)
so, x2–
=
Factorise:
x4 – y4
Using the identity,
x2–y2 = (x + y)(x–y)
so, (x2)2–(y2)2
= (x2–y2)(x2 + y2)
= (x–y)(x + y)(x2 + y2)
Factorise:
: Using the identity,
x2–y2 = (x + y)(x–y)
so,
Factorise:
(0.7)2 – (0.3)2
: Using the identity,
x2–y2 = (x + y)(x–y)
so, 0.72–0.32 = (0.7–0.3)(0.7 + 0.3)
= 0.41.0
= 0.4
Factorise:
(5a – 2b)2 – (2a – b)2
: Using the identity,
x2–y2 = (x + y)(x–y)
so, (5a – 2b)2 – (2a – b)2 = (5a–2b–2a + b)(5a–2b + 2a–b)
= (3a–b)(7a–3b)
= 21a2–9ab–7ab + 3b2
= 21a2–16ab + 3b2
In the following, you are given the product pq and the sum p + q. Determine p and q:
pq = 18 and p + q = 11
as, p + q = 11
⇒p = 11–q
putting the value of q in other equation,
⇒ pq = 18
⇒ (11–q)q = 18
⇒11q–q2 = 18
⇒q2–11q + 18 = 0
⇒q2–2q–9q + 18 = 0
⇒q(q–2)–9(q–2) = 0
⇒ (q–2)(q–9) = 0
So, q = 2 & q = 9
As, p = 11–q
Thus, p = 11–2 = 9 & p = 11–9 = 2
In the following, you are given the product pq and the sum p + q. Determine p and q:
pq = 32 and p + q = –12
As, p + q = –12
⇒p = –12–q
putting the value of q in other equation,
⇒ pq = 32
⇒ (–12–q)q = 32
⇒–12q–q2 = 32
⇒q2 + 12q + 32 = 0
⇒q2 + 8q + 4q + 32 = 0
⇒q(q + 8) + 4(q + 4) = 0
⇒ (q + 4)(q + 8) = 0
so, q = –4 & q = –8
as, p = –12–q
thus, p = –12 + 4 & p = –12 + 8
p = –8 & p = –4
In the following, you are given the product pq and the sum p + q. Determine p and q:
pq = –24 and p + q = 2
As, p + q = 2
⇒p = 2–q
putting the value of q in other equation,
⇒ pq = –24
⇒ (2–q)q = –24
⇒2q–q2 = –24
⇒q2–2q–24 = 0
⇒q2–6q + 4q–24 = 0
⇒q(q–6) + 4(q–6) = 0
⇒ (q + 4)(q–6) = 0
so, q = –4 & q = 6
as, p = 2–4
thus, p = 2 + 4 & p = 2–6
p = 6 & p = –4
In the following, you are given the product pq and the sum p + q. Determine p and q:
pq = –12 and p + q = 11
As, p + q = 11
⇒p = 11–q
putting the value of q in other equation, ⇒
⇒ pq = –12
⇒ (11–q)q = –12
⇒11q–q2 = –12
⇒q2–11q–12 = 0
⇒q2 + q–12q–12 = 0
⇒q(q + 1)–12(q + 1) = 0
⇒ (q–12)(q + 1) = 0
So. q = 12 & q = –1
As, p = 11–q
thus, p = 11–12 & p = 11 + 1
p = –1 & p = 12
In the following, you are given the product pq and the sum p + q. Determine p and q:
pq = –6 and p + q = –5
p + q = –5
⇒p = –5–q
putting the value of q in other equation,
⇒ pq = –6
⇒ (–5–q)q = –6
⇒–5q–q2 = –6
⇒q2 + 5q–6 = 0
⇒q2 + 6q–q–6 = 0
⇒q(q + 6)–1(q + 6) = 0
⇒ (q–1)(q + 6) = 0
so, q = 1 & q = –6
as p = –5–q
thus, p = –5–1 & p = –5 + 6
p = –6 & p = 1
In the following, you are given the product pq and the sum p + q. Determine p and q:
pq = –44 and p + q = –7
p + q = –7
⇒p = –7–q
putting the value of q in other equation,
⇒ pq = –44
⇒ (–7–q)q = –44
⇒–7q–q2 = –44
⇒q2 + 7q–44 = 0
⇒q2 + 11q–4q–44 = 0
⇒q(q + 11)–4(q + 11) = 0
⇒ (q–4)(q + 11) = 0
so, q = 4 & q = –11
as, p = –7–q
thus, p = –7–4 & p = –7 + 11
p = –11 & p = 4
Factorise:
x2 + 6x + 8
x2 + 4x + 2x + 8
= x(x + 4) + 2(x + 4)
= (x + 2)(x + 4)
Factorise:
x2 + 4x + 3
x2 + x + 3x + 3
= x(x + 1) + 3(x + 1)
= (x + 1)(x + 3)
Factorise:
a2 + 5a + 6
a2 + 2a + 3a + 6
= a(a + 2) + 3(a + 2)
= (a + 3)(a + 2)
Factorise:
a2 – 5a + 6
a2–2a–3a + 6
= a(a–2)–3(a–2)
= (a–3)(a–2)
Factorise:
a2 – 3a – 40
a2–8a + 5a–40
= a(a–4) + 5(a–4)
= (a + 5)(a–4)
Factorise:
x2 – x – 72
x2–9x + 8x–72
= x(x–9) + 8(x–9)
= (x + 8)(x–9)
Factorise:
x2 + 14x + 49
using (x + y)2 = x2 + 2xy + y2
= x2 + 2 × 7 × x + 7 × 7
= (x + 7)2
= (x + 7)(x + 7)
Factorise:
4x2 + 4x + 1
using (x + y)2 = x2 + 2xy + y2
= (2x)2 + 2 × 2x × 1 + 12
= (2x + 1)2
= (2x + 1)(2x + 1)
Factorise:
a2 – 10a + 25
using (x–y)2 = x2–2xy + y2
= a2–2 × a × 5 + 52
= (a–5)2
= (a–5)(a–5)
Factorise:
2x2–24x + 72
using (x–y)2 = x2–2xy + y2
= 2[x2–12x + 36]
= 2[x2–2 × x × 6 + 62]
= 2(x–6)2
= 2(x–6)(x–6)
Factorise:
p2 – 24p + 144
using (x–y)2 = x2–2xy + y2
= p2–2 × p × 12 + 122
= (p–12)2
= (p–12)(p–12)
Factorise:
x3 – 12x2 + 36x
using (x–y)2 = x2–2xy + y2
= x[x2–12x + 36]
= x[x2–2 × x × 6 + 62]
= x(x–6)2
= x(x–6)(x–6)
4a + 12b is equal to
A. 4a
B. 12b
C. 4(a + 3b)
D. 3a
⇒ 4a + 12b
⇒ 4(a + 3b)
The product of two numbers is positive and their sum negative only when
A. both are positive
B. both are negative
C. one positive the other negative
D. one of them equal to zero
The product of two numbers is positive, when either both the numbers are positive or both the numbers are negative.
Sum of two positive numbers is positive and the sum of two negative numbers is negative.
∴ The product of two numbers is positive and their sum negative only when both are negative.
Factorising x2 + 6x + 8, we get
A. (x + 1)(x + 8)
B. (x + 6)(x + 2)
C. (x + 10)(x – 2)
D. (x + 4)(x + 2)
⇒ x2 + 6x + 8
⇒ x2 + 4x + 2x + 8
⇒ x(x + 4) + 2(x + 4)
⇒ (x + 4)(x + 2)
The denominator of an algebraic fraction should not be
A. 1
B. 0
C. 4
D. 7
The denominator of a algebraic function should not be 0.
∵ When denominator is 0, the fraction becomes undefined.
If the sum of two integers is –2 and their product is –24, the numbers are
A. 6 and 4
B. –6 and 4
C. –6 and –4
D. 6 and –4
Let, the two integers = x and y
According to problem,
⇒ x + y = - 2 ……… (1)
and
⇒ xy = - 24 ……… (2)
∴ (x + y)2 = (-2)2
⇒ (x – y)2 + 4xy = 4
⇒ (x – y)2 + 4 × (-24) = 4
⇒ (x – y)2 = 4 + 96 = 100
⇒ x – y = ±10
Case 1.
x - y = 10 …… (a) and x + y = - 2 …… (b)
From (a) + (b) we get,
⇒ 2x = 8
⇒ x = 4
∴ 4 – y = 10 [from (a)]
⇒ y = 4 – 10
⇒ y = - 6
Case 2.
x – y = - 10 …… (c) and x + y = - 2 …… (d)
From (c) + (d) we get,
⇒ 2x = - 12
⇒ x = - 6
∴ -6 – y = - 10
⇒ y = 10 – 6
⇒ y = 4
∴ The numbers are 4 and – 6.
The difference (0.7)2 – (0.3)2 simplifies to
A. 0.4
B. 0.04
C. 0.49
D. 0.56
⇒ (0.7)2 – (0.3)2
⇒ (0.7 + 0.3)(0.7 – 0.3)
⇒ 1 × 0.4
⇒ 0.4
Factorise the following:
(i) x2 + 6x + 9
(ii) 1 – 8x + 16x2
(iii) 4x2 – 81y2
(iv) 4a2 + 4ab + b2
(v) a2b2 + c2d2 – a2c2 – b2d2.
(i) ⇒ x2 + 6x + 9
⇒ x2 + 2 × 3× x + 32
⇒ (x + 3)2
(ii) ⇒ 1 – 8x + 16x2
⇒ 12 – 2 × 1 × 4x + (4x)2
⇒ (1 – 4x)2
(iii) ⇒ 4x2 – 81y2
⇒ (2x)2 – (9y)2
⇒ (2x + 9y)(2x – 9y)
(iv) ⇒ 4a2 + 4ab + b2
⇒ (2a)2 + 2 × 2a × b + b2
⇒ (2a + b)2
(v) ⇒ a2b2 + c2d2 – a2c2 – b2d2
⇒ (a2b2 – a2c2) – (c2d2 – b2d2)
⇒ a2(b2 – c2) – d2(b2 – c2)
⇒ (b2 – c2) (a2 – d2)
Foctorise the following:
x2 + 7x + 12
⇒ x2 + 7x + 12
⇒ x2 + 4x + 3x + 12
⇒ x(x + 4) + 3(x + 4)
⇒ (x + 4)(x + 3)
Foctorise the following:
x2 + x – 12
⇒ x2 + x – 12
⇒ x2 + 4x - 3x - 12
⇒ x(x + 4) – 3(x + 4)
⇒ (x + 4)(x - 3)
Foctorise the following:
x2 – 3x – 18
⇒ x2 - 3x - 18
⇒ x2 - 6x + 3x - 18
⇒ x(x - 6) + 3(x - 6)
⇒ (x - 6)(x + 3)
Foctorise the following:
x2 + 4x – 21
⇒ x2 + 4x – 21
⇒ x2 + 7x - 3x – 21
⇒ x(x + 7) – 3(x + 7)
⇒ (x + 7)(x – 3)
Foctorise the following:
x2 – 4x – 192
⇒ x2 - 4x – 192
⇒ x2 - 16x + 12x – 192
⇒ x(x – 16) + 12(x – 16)
⇒ (x – 16)(x + 12)
Foctorise the following:
x4 – 5x2 + 4
⇒ x4 - 5x2 + 4
⇒ x4 - 4x2 – x2 + 4
⇒ x2(x2 - 4) - (x2 - 4)
⇒ (x2 - 4)(x2 - 1)
⇒ (x2 – 22)(x2 – 12)
⇒ (x – 2)(x + 2)(x – 1)(x + 1)
Foctorise the following:
x4 – 13x2y2 + 36y4.
⇒ x4 - 13x2y2 + 36y4
⇒ x4 - 4x2 y2 - 9x2y2 + 36y4
⇒ x2(x2 – 4y2) - 9y2(x2 – 4y2)
⇒ (x2 – 4y2)(x2 – 9y2)
⇒ {x2 – (2y)2}{x2 – (3y)2}
⇒ (x – 2y)(x + 2y)(x – 3y)(x + 3y)
Since,
Foctorise the following:
2x2 + 7x + 6
⇒ 2x2 + 7x + 6
⇒ 2x2 + 4x + 3x + 6
⇒ 2x(x + 2) + 3(x + 2)
⇒ (x + 2)(2x + 3)
Foctorise the following:
3x2 – 17x + 20
⇒ 3x2 – 17x + 20
⇒ 3x2 - 12x - 5x + 20
⇒ 3x(x - 4) - 5(x - 4)
⇒ (x - 4)(3x - 5)
Foctorise the following:
6x2 – 5x – 14
⇒ 6x2 - 5x – 14
⇒ 6x2 - 12x + 7x – 14
⇒ 6x(x – 2) + 7(x – 2)
⇒ (x - 2)(6x + 7)
Foctorise the following:
4x2 + 12xy + 5y2
⇒ 4x2 + 12xy + 5y2
⇒ 4x2 + 10xy + 2xy + 5y2
⇒ 2x(2x + 5y) + y(2x + 5y)
⇒ (2x + 5y)(2x + y)
Foctorise the following:
4x4 – 5x2 + 1.
⇒ 4x4 - 5x2 + 1
⇒ 4x4 - 4x2 – x2 + 1
⇒ 4x2(x2 - 1) - (x2 – 1)
⇒ (x2 - 1)(4x2 - 1)
⇒ (x – 1)(x + 1)(2x – 1)(2x + 1)
Factorise the following:
x8 – y8
⇒ x8 – y8
⇒ (x4)2 – (y4)2
⇒ (x4 + y4)(x4 – y4)
⇒ (x4 + y4){(x2)2 –( y2)2}
⇒ (x4 + y4)(x2 + y2)(x2 – y2)
⇒ (x4 + y4)(x2 + y2)(x + y)(x – y)
Factorise the following:
ax4 – ax12
⇒ ax4 – ax12
⇒ ax4(1 – x8)
⇒ ax4{1 – (x4)2}
⇒ ax4(1 + x4)(1 – x4)
⇒ ax4(1 + x4){1 – (x2)2}
⇒ ax4 (1 + x4)(1 + x2)(1 - x2)
⇒ ax4 (1 + x4)(1 + x2)(1 + x)(1 – x)
Factorise the following:
x + x2 + 1
⇒ x2 + x4 + 1
⇒ x4 + 2x2 + 1 – x2
⇒ x4 + 2 × x2 × 1 + 12 – x2
⇒ (x2 + 1)2 – x2
⇒ (x2 + 1 + x)(x2 + 1 – x)
Factorise the following:
x4 + 5x2 + 9.
⇒ x4 + 5x2 + 9
⇒ x4 + 6x2 + 9 – x2
⇒ (x2)2 + 2 × 3 × x2 + 32 – x2
⇒ (x2 + 3)2 – x2
⇒ (x2 + 3 + x) (x2 + 3 – x)
Since,
Factorise x4 + 4y4. Use this to prove that 20114 + 64 is a composite number.
⇒ x4 + 4y4
⇒ (x2)2 + (2y2)2
⇒ (x2 + 2y2)2 - 2× x2 × 2y2
⇒ (x2 + 2y2)2 - 4x2y2
⇒ (x2 + 2y2)2 – (2xy)2
⇒ (x2 + 2y2 + 2xy)(x2 + 2y2 – 2xy)
Now we get,
⇒ 20114 + 64
⇒ 20114 + 4 × 24
⇒ (20112)2 + (2×22)2
⇒ (20112 + 42)2 - 2× 20112 × 2 × 22
⇒ (20112 + 42)2 – 4 × 20112 × 22
⇒ (20112 + 42)2 – (2×2011×2)2
()
⇒ (20112 + 42 + 2×2011×2)(20112 + 42 – 2×2011×2)
⇒ (4044121 + 16 + 8044)(4044121 + 16 – 8044)
⇒ 4052181 × 4036093